

The Joint Annual Meeting of The Bioelectromagnetics Society and the European BioElectromagnetics Association

Technical Program and General Information

The Bioelectromagnetics Society - Officers and Board of Directors

President	Rene De Seze	France
President-Elect	Marthinus Van Wyk	South Africa
Treasurer	Bennett Ibey	USA
Secretary	Azadeh Peyman	United Kingdom
Board Member	Guangdi Chen	China
Board Member	Satoshi Nakasono	Japan
Board Member	Lucas Portelli	Switzerland
Editor-In-Chief (ex-officio)	James C. Lin	United States

European BioElectromagnetics Association Council

President	Micaela Liberti	Italy
Past-President	Luc Martens	Belgium
Treasurer	Niels Kuster	Switzerland
Secretary	Isabelle Lagroye	France
Engineering/Physical Sciences	Maxim Zhadobov	France
Engineering/Physical Sciences	Philippe Leveque	France
Engineering/Physical Sciences	Antonio Sarolic	Croatia
Biological/Medical Sciences	Martin Röösli	Switzerland
Biological/Medical Sciences	Florence Poulletier De Gannes	France
Biological/Medical Sciences	Anke Huss	Netherlands
At Large	Wout Joseph	Belgium
At Large	Caterina Merla	Italy
At Large	Olga Zeni	Italy

Local Organizing Committee Belgium

Luc Martens Chair BioEM 2021

Wout Joseph Co-chair BioEM 2021 on-site conference

Arno Thielens Co-chair BioEM 2021 online conference

Günter Vermeeren Website responsible

Isabelle Van der Elstraeten Congress coordinator

Leen Verloock Procurement

Margot Deruyck Administration support

Judith Pollet Administration support

Melanie De Coster Facility event & corona coordinator

Sam Aerts Student Responsible & support online

Extended Local Organizing Committee BioEM 2021

Rich Nuccitelli LOC BioEM 2021 US

Pam Nuccitelli LOC BioEM 2021 US

Azadeh Peyman LOC BioEM 2020

Sami Gabriel LOC BioEM 2020

Niels Kuster Treasurer EBEA

Bennett Ibey Treasurer BEMS

Technical Program Committee 2021

Marnus van Wyk BEMS co-chair

Olga Zeni EBEA co-chair

Alexandre Legros BEMS

Wout Joseph EBEA

Bennett Ibey BEMS

Maxim Zhadobov EBEA

From the Co-chairs of the Local Organizing Committee

On behalf of the BioEM2021 Local Organizing Committee, I welcome you to Ghent, Belgium, or online for the Annual Joint Meeting of the Bioelectromagnetics Society (BEMS) and the European BioElectromagnetics Association (EBEA). I thank the two societies and the for the support and help with the organization.

The conference is held for the second time in Ghent. The city of Ghent is a compact, authentic city where the past and present co-exist in perfect balance. Ghent is one of the most beautiful historic cities in Europe and was given several pretty names: historic heart of Flanders, a city of all times, medieval Manhattan, Europe's best kept secret. On Sunday evening, the Opening Reception, and on Tuesday evening, the banquet, will be held in the Old Fish Market ("Oude Vismijn"). This beautiful building with its baroque facade from 1689 stands near to the old Gravensteen on the Saint Veerle square.

The conference will be held in Flanders Expo meeting center, easily reachable by tram from the historic center of Ghent. It is a modern meeting center that allow to implement the COVID-19 measures listed on the BioEM2021 website although no measures are anymore mandated by the Belgian government. We still keep these measures as we want to create a safe and healthy environment during the conference.

But we are also glad that we can offer for all our remote conference participants a platform that will enable online view of all posters, life attendance of all presentations, interactions through chat and Q&A and delayed playback of the presentations.

We are very grateful for the generous support of our sponsors, listed on the meeting website, the online platform and at the end of this booklet.

I look forward to seeing you throughout the week or meeting you on the online platform. And I wish you an interesting conference with a lot of networking moments in Ghent and on the online platform. And have a lot of fun!

Luc Martens Chair On behalf of the Local Organizing Committee

From the Co-chairs of the Technical Program Committee

On behalf of the Technical Program Committee (TPC), we are pleased to welcome you to BioEM 2021, the annual joint meeting of the Bioelectromagnetics Society (BEMS) and the European BioElectromagnetics Association (EBEA). Exceptionally this year, due to the COVID-19 Pandemic, the conference is in a hybrid format, with authors and participants attending the conference in person in Ghent, Belgium, and others attending remotely. The technical program includes physical sessions with on-site presentations and virtual (on-line) sessions for remote participants.

In addition to the opportunity to learn about research activities, progress and future challenges in the areas of bioelectromagnetics, this event provides a unique opportunity for the promotion and development of graduate students and their research.

We would like to thank the members of both societies and all contributors for the high quality proposals of plenaries, tutorials and workshops that allowed us to select four plenary talks, three tutorials and four workshops that address key issues and hot topics in bioelectromagnetics covered by distinguished speakers. This includes plenaries on health care applications of EM waves, on safety guidelines, on electrogenetransfer for DNA vaccine, and on millimeter waves for 5G/6G and beyond. The tutorials cover bioelectrically-mediated morphogenetic controls for regenerative medicine, quality and systematic reviews in bioelectromagnetics research. Four workshops will be on sensitivity to EMF, on effects of ultraweak field on biological systems, on effects of RF on thermal regulation and on local exposure in the context of risk assessment. We would like to especially acknowledge the invited speakers for accepting our invitation and the workshops organizers for their valuable contribution to the conference program.

219 abstracts were submitted this year, and many researchers from the BioEM community acted as external reviewers, whose dedication in assisting the TPC in the abstract review process are greatly acknowledged. The accepted abstracts were assigned into 13 oral sessions and one poster session preceded by the student flash poster session. The sessions cover health protection, from experimental studies to dosimetry and risk and safety standards, as well as clinical applications. We register a strong participation of students this year with 37 submitted abstracts demonstrating the ability of EBEA and BEMS societies to attract young researchers by providing them with a motivating research community.

According to the tradition of the BioEM conferences, we will be delighted to have as a part of the program the d'Arsonval Award Lecture and the Chiabrera Award Lecture. The Arthur Pilla Young Scientist Award and the Awards for the Best Student Presentations (poster and platform) will recognize the outstanding contributions from early career researchers.

We thank the members of the TPC for their valuable contribution and Astrid Chamson-Reig from Lawson Health Research Institute in Canada who worked particularly hard this year for managing the abstract submission website and the Book of Abstracts. Our special thanks go to the Chairs and the members of the Local Organizing Committee for their efforts in accommodating the BioEM 2021 Conference in the current unusual format.

We are looking forward to see you at BioEM 2021 and sincerely hope you will enjoy the meeting in Ghent or online!

Olga Zeni, Marnus Van Wyk, Maxim Zhadobov and Alexandre Legros (BioEM2021 TPC Co-chairs)

Technical Program Review Committee

John Bolte

Netherlands

C-K. Chou

United States

Serena Fiocchi

Italy

Peter Jeschke

Germany

Quirino Frank Barnes

Balzano

Delia Arnaud-Cormos France United States

United States

Stefan Dongus

Switzerland

Francis Hart

United States

Stavros

Koulouridis

Greece

Antonino Mario Phil Chadwick Astrid Chamson-Reig United Kingdom Canada

> Dagmar Dechent

Germany

Ben

United States

Leena

Korpinen

Finland

Denys

France

Stefania

Romeo

Italy

Greenebaum

Cassara Switzerland

Rene De Seze France

Jose Gomez-Tames

Mohsen Koohestani France

Isabelle Magne France

Mihaela Morega Romania

Mary Redmayne New Zealand

Nikolayev

Alberto Nájera Spain

Jack Rowley

Australia

Giulia Sacco France

Norway

Antonio SarolicGernot Schmid Masaki Sekino Croatia Austria Japan

Michal Cifra

Czech

Republic

Kenneth

Foster

United States

Wout Joseph

Belgium

Alireza

Lajevardipour

Australia

Caterina Merla

Italy

Christian Bornkessel Germany

United States

Juerg

Froehlich

Switzerland

Jukka

Juutilainen

Finland

Hae-June Lee

Korea

Luciano

Mescia

Italy

Robert Claudia Cleveland Consales

Italy

Osamu

Fujiwara

Japan

Efthymios

Karabetsos

Greece

Philippe

Leveque

Italy

Asher

Nicolas

Bouche France

Broom

Valerio De Santis Italy

Rodney Croft Australia

Jolanta

Karpowicz

Poland

Martin Gledhill

New Zealand

Leeka Kheifets United States

James C. Lin United States

France Gabor Mezei USA

China

Hiroaki Miyagi Alberto Modenese Japan

Florence Poulletier De Gannes

Myrtill Simko Sweeden

Germany

Geza Benke

Australia

Indira

Chatterjee

United States

Marloes

Eeftens

Switzerland

Takashi

Matej Kranjc Slovenia

Ilkka Laakso

Mats-Olof Robert Mattsson McIntosh Austria Australia

6

Pakhomov United States

Sheppard United States

Shoogo Ueno Japan Eric Van Rongen Netherlands

Shengyong Yin China

Soichi Watanabe Japan

Olga Zeni Italy

Sweden

Jonna Wilen Andrew Wood Australia

Bo Xu Canada

Maxim Zhadobov France

Schedule at a Glance

Monday, September 27, 2021

Time	Session	Name	Location
08:00 - 09:00		Opening and welcome	Einstein
09:00 - 10:00	P1	Plenary 1 - 5G Overview and what Next	Einstein
10:00 - 10:30		Coffee Break	
10:30 - 12:00	S01	Dosimetry 1 (Measurements)	Einstein
10:30 - 12:00	S02	Electroporation 1	Maxwell
12:00 - 13:00		Lunch	
13:00 - 14:00	M1	Merger General Meeting	Einstein
14:00 - 15:00	FS	Student Flash Poster Session	Einstein
15:00 - 16:30	PS	Poster Session	Flex Meet
16:30 - 17:00		Coffee Break	
17:00 - 19:00	W1	Workshop 1 - Local exposure in the context of risk assessment: Theory and practical demonstration	Einstein

Tuesday, September 28, 2021

Time	Session	Name	Location
08:00 - 09:45	S03	Dosimetry 2 (Computational)	Einstein
08:00 - 09:45	S04	In Vitro RF	Maxwell
09:45 - 11:00	S05	Dosimetry 3 (Measurements)	Einstein
09:45 - 11:00	S06	In Vivo	Maxwell
11:00 - 11:30		Coffee Break	

11:30 - 12:30	P2	Plenary 2 - Exploring the potentials of EM waves from body-scale to nano- communications for healthcare applications	Einstein
12:30 - 13:30	CA	Chiabrera Award	Einstein
13:30 - 15:00		Lunch	
13:30 - 15:00	M2	BEMS ABM	Einstein
15:00 - 16:30	W2	Workshop 2 - Effects of low-intensity RF on thermal regulation	Einstein
16:30 - 17:00		Coffee Break	
17:00 - 17:45	S07	Mechanistic / Theoretical	Einstein
17:00 - 17:45	S08	Human Studies	Maxwell
17:45 - 18:45	T1	Tutorial 1 - Endogenous bioelectric networks underlie embryogenesis, regeneration and cancer: from basic mechanisms to electroceuticals	Einstein

Wednesday, September 29, 2021

Time	Session	Name	Location
08:00 - 10:00	S09	Dosimetry 4 (Computational)	Einstein
08:00 - 10:00	S10	Clinical / Diagnosis / Therapy	Maxwell
10:00 - 10:30		Coffee Break	
10:30 - 12:00	S11	Dosimetry 5	Einstein
10:30 - 12:00	S12	Risk, Safety Standards and Policies	Maxwell
12:00 - 13:00	Ρ3	Plenary 3 - A comparison between the recently released IEEE standard and ICNIRP radiofrequency guidelines: What are the differences, and do they make a difference?	Einstein

13:00 - 14:30		Lunch	
13:30 - 14:30	M3	EBEA GA	Einstein
14:30 - 16:30	W3	Workshop 3 - Ultraweak and weak static, ELF, and RF field effects on biological systems	Einstein
16:30 - 17:00		Coffee Break	
17:00 - 18:00	DA	d'Arsonval Award	Einstein

Thursday, September 30, 2021

Time	Session	Name	Location
08:00 - 09:45	S13	Electroporation 2	Einstein
09:45 - 10:45	T2	Tutorial 2 - Systematic reviews in Bioelectromagnetic research	Einstein
10:45 - 11:15		Coffee Break	
11:15 - 12:15	P4	Plenary 4 - Electrogene transfer: challenges and recent advances in DNA- based vaccines	Einstein
12:15 - 13:15	ТЗ	Tutorial 3 - Study Quality and Reproducibility – Pillars for safety assessments and medical applications in Bioelectromagnetics	Einstein
13:15 - 14:30		Lunch	
14:00 - 14:30	M4	Merger Announcement	Einstein
14:30 - 16:00	W4	Workshop 4 - Sensitivity to EMF: The Present and The Future	Einstein
16:00 - 16:30		Coffee Break	
16:30 - 17:00		Student Award	Einstein
17:00 - 17:15		Young Scientist Award	Einstein
17:15 - 17:45		Closing session	Einstein

General Information

THE CONFERENCE VENUE

BioEM2021 will be held in "Flanders Expo", It's an event complex in Ghent (Sint-Denijs-Westrem) and one of the largest in Belgium. The total exhibition area is more than 54,000 m². Trade fairs, expositions, conferences and other large-scale gatherings are organized in the complex.

Ghent is a city and a municipality in the Flemish region of Belgium. It is the capital and largest city of the East Flanders province, and the third largest in the country, exceeded in size only by Brussels and Antwerp. It is a port and university city.

ACCESSIBILITY

By tram:

Catch tram 1 heading for Flanders Expo and jump off at the Flanders Expo stop.

Tram line 1 takes you from Evergem/Wondelgem via the center and Sint-Pieters station to Flanders Expo and back. You will be dropped off almost at the door of the halls.

The frequency varies between 5 and 23 minutes (depending on rush hours), the travel time between Sint-Pieters station and Flanders Expo is 7 to 8 minutes.

Starts at 05:42 and ends at 23:05

By Car:

Exit the E40 Brussels – Ostend motorway at junction 14 Parking A4 is at our disposal

REGISTRATION AND INFORMATION DESK

When you arrive at the location signs will guide you to the entrance of Flanders Expo

On Sunday, September 26, the registration and Information desk will be open at the location of the opening reception 'De Oude Vismijn' from 18:00 on.

From Monday, September 27 until Thursday, September 30, the Registration Desk will be open in the conference center from 8:00 until the end of the last meeting session of each day.

CONFERENCE BADGE

Badges must be worn at all times during the meeting and during all social events (registered guests as well). The badges will be delivered at the Registration desk.

CONFERENCE LUNCH AND COFFEE BREAKS

A buffet lunch will be provided every day during the conference.

Coffee breaks will take place in the morning and in the afternoon.

SOCIAL EVENTS

1. GENERAL INFORMATION

"Flanders Expo" is located in Ghent, easily accessible by tram, only an 8 minute ride will take you to the heart of Ghent. In the center you can enjoy our historic buildings but just as well have a drink in many beautiful bars.

There is also a lot inside or outside visits you can make, and you'll be provided in your conference bag with a map and info of the city.

2. WELCOME RECEPTION, Sunday September 26

Sunday, September 26, 19:00 at "De Oude Vismijn" (Rekelingestraat 5, Ghent). Expected end time: approximately 22:00.

3. STUDENT ICE BREAKER, Sunday September 26

The Student Ice Breaker will be held on Sunday September 26 at the Bar Mirwaar (Burgstraat 59, Ghent). This will be a great occasion for students to get to know each other sharing a few drinks. Let's go to the bar at 21:00.

4. CONFERENCE DINNER, Tuesday September 28

Please join us Tuesday September 28 for the Conference dinner. We will expect you at the location "De Oude Vismijn" (Rekelingestraat 5, Ghent) at 19:00.

The Oude Vismijn' shelters event halls and was known, before its spectacular renovation as the oldest fish, meat and vegetable market in the city center of Ghent.

Begin with a cocktail before having the Gala dinner served in this beautiful environment. Of course you will need your dancing shoes on to properly end the night!

ORAL AND POSTER PRESENTATION GUIDELINES

Please find below some potentially useful material to assist you in preparing a presentation for BioEM2021. Papers are to be presented in two basic formats: Oral and Poster Presentations. Below you will find specific information concerning these two formats.

If for any reason you find yourself unable to personally present your paper, please try to arrange for someone else to present it. If nobody is available to present your work, you must notify the TPC Chairs well ahead of time (at tpc@bioem.org). If the presentation does not take place, the corresponding abstract will be removed from the online abstract book.

No photos or video recording are allowed during presentations.

Due to the current Covid situation, the BioEM2021 conference will be a hybrid conference, with some people physically attending in Ghent and other people attending online. We work together with the company Bitstream from Ghent who will deliver the onsite video streaming and online conference platform (further referred to online platform provider).

Guidelines for entries into the student and young scientist competitions are also given here.

1. Invited speakers presenting in Plenaries, Tutorials and Workshops

1.1 Authors attending physically in Ghent

Authors will present from the conference venue and the session streamed and recorded.

1.2 Authors attending remotely

Authors are requested to present online in real-time, if possible. As backup, speakers are requested to upload a pre-recorded talk. The online platform will provide a chat for questions and answers.

Instructions for remote talks in real-time:

- Software: Access to the video platform will be provided by the online platform provider (Zoom room)
- Broadband internet connection
- Preferable an HD webcam
- You will be contacted by the online platform administrator 10 min before the start of your presentation

Instructions for the pre-recorded talks:

- All files must be in MP4 H264 Format and HD 1080p resolution
- Video length: scheduled duration of the talk
- Slideshow with audio and recording of presenter in corner of the screen so that the material presented is not hidden behind the recording of the presenter
- Peak Bit Rate: 10 Mbps
- Aspect Ratio: 16:9 Landscape
- File name extension: mp4
- The online platform provider will provide a dropbox link for your uploads. It is important the title is clearly described (example: plenary_sessionnumber_firstname_lastname or tutorial_sessionnumber_firstname_lastname or workshop_sessionnumber_firstname_lastname) Tips for remote live talks and recording audio/video:
 - Use an area as quiet as possible.
 - Avoid areas that have echo.
 - A good headset with a microphone set close to your mouth BUT away from direct line of mouth to reduce "pops". Try to avoid using default, built-in microphones on your computer, if possible.

2. Oral Presentations for speakers (excluding invited speakers)

All oral presentations have been allocated a 15-minutes time slot. These 15-minutes must include the presentation, questions, and transitioning to the next speaker. It is recommended that speakers plan on a 11 minute presentation to allow for questions, discussion and transition (4 minutes). **There will be an online platform for questions and answers.** It is important to strictly adhere to this schedule as most oral presentations are scheduled in parallel sessions. Arrive at least 10 minutes early prior to the start of the session and introduce yourself to the chair and familiarize yourself with the audio-visual equipment.

2.1 Authors attending physically in Ghent

Authors will present from the conference venue and the session streamed and recorded.

Each meeting room will be equipped with a personal computer to accommodate PowerPoint and PDF presentation formats. Technical support will be present in each meeting room to ensure flawless execution. Authors must upload their presentations onto the designated computer at the conference venue during the break before their session at the latest. Presenters will not be allowed to connect their own computer to the projection system. Presentations can be loaded via USB flash memory stick.

Authors are urged to try to minimize any potential problems by taking advantage of redundancy whenever possible: save and bring presentations in multiple formats (PowerPoint and Adobe PDF), store presentations in more than one media, and keep the media on your person during travel.

All oral presenters are expected to support their presentation with a corresponding slideshow. The slides should be prepared in either PowerPoint (PPT/PPTX) or PDF format to ensure maximum compatibility with the equipment available on-site. Videos should either be embedded into the slides, or, if linked, physically accompany the main presentation document.

There will be a designated contact person coordinating the upload of your file in your session room. Please coordinate with this person to upload your presentation preferably the day before.

Presenters are strongly encouraged to verify that their presentation materials uploaded properly on the

on-site equipment.

2.2 Authors attending remotely

Are required to upload a pre-recorded talk which will then be streamed at the correct time. Live presentations are not possible. We have decided that because we want to avoid problems with the remote internet connections during the talks.

Instructions for the pre-recorded talks:

- All files must be in MP4 H264 Format and HD 1080p resolution
- Video length: 11 minutes
- Slideshow with audio and recording of presenter in corner of the screen so that the material presented is not hidden behind the recording of the presenter
- Peak Bit Rate: 10 Mbps
- Aspect Ratio: 16:9 Landscape
- File name extension: mp4
- The online platform provider will provide a dropbox link for your uploads. It is important the title is clearly described (example: oral_sessionnumber_firstname_lastname)

Tips for recording audio/video:

- Use an area as quiet as possible.
- Avoid areas that have echo.
- A good headset with a microphone set close to your mouth BUT away from direct line of mouth to reduce "pops". Try to avoid using default, built-in microphones on your computer, if possible.

3. Poster Presentations

Poster sessions are an important part of the BioEM2021 conference and allow for immediate and effective communication between all those interested in specific subjects, actions or programs. Posters should be carefully designed and prepared to ensure their full impact. The physical poster session will be on Monday September 27, 2021 at 15:00 - 16:30 in the "Flex Meet". **There will also be online versions of the posters due to the BioEM2021 format.** There will be an online platform for questions and answers on posters.

3.1 Poster presenters attending physically in Ghent

Presenters must present their poster during the poster session detailed above, as usual. Presenters must also upload a PDF of the poster to the online platform. Presenters are also invited (not mandatory) to upload a 3 minute flash presentation to the platform.

Instructions for posters uploaded to the online platform:

- PDF format
- Portrait orientation
- A4 size

Double-sided boards in portrait format (120 cm x 100 cm) will be available for each author to attach their poster. The authors are advised to limit their poster size to 120 cm (height) X 90 cm (width) – this includes format A0. Material will be provided by the organizers for mounting posters. The boards will be numbered to correspond with poster numbers in the Program and student posters will be clearly identified.

Authors should be present at their posters for the duration of their assigned session to discuss their work and answer questions, as there will be a flux of attendees.

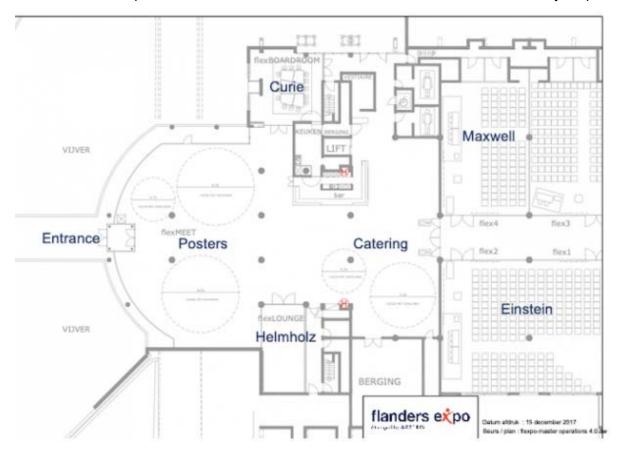
Mounting: Posters can be mounted from Monday September 27, 9:00 am. Each board will be marked with the poster number, as indicated in the final program. Removal: Posters must be removed before Thursday September 30, 12:00 am.

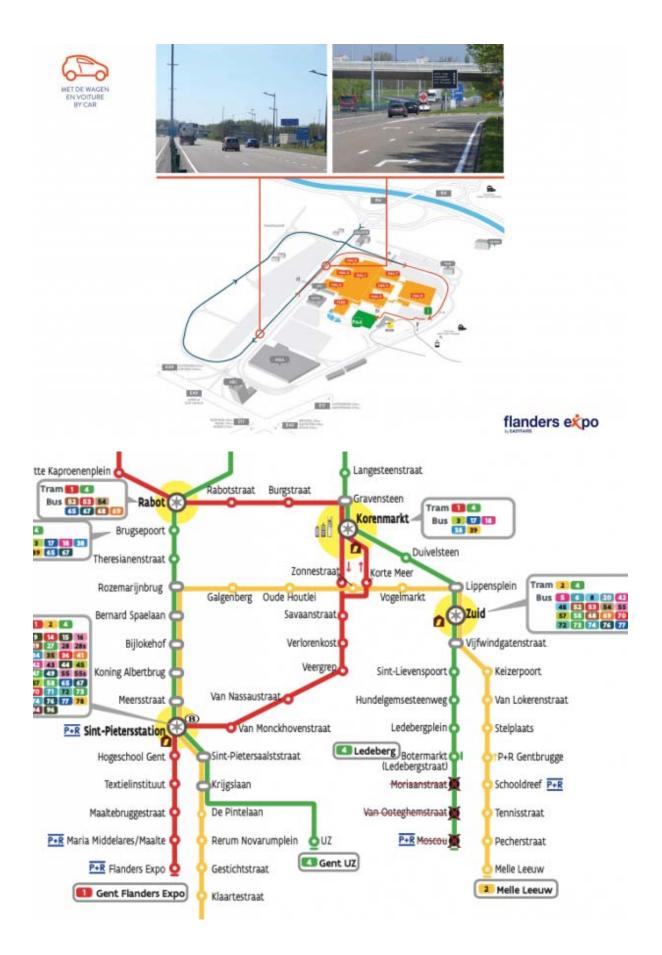
All student posters will also be presented as poster flash presentation. The poster flash session will take place in "Einstein" room on Monday, September 27 from 2:00 pm to 3:00 pm. Authors should prepare their communication carefully (in English). Each presenter will have 3 minutes to present 4 slides

maximum for the flash presentation (discussions will follow afterwards at the poster). Authors should introduce themselves in the beginning of the presentation and point out the main findings of their work. Hence the presentation should not include new material that is not shown on your poster. The chairs will call up the next presenter after the 3 minutes are over and the current presenter must leave the podium.

3.2 Poster presenters attending remotely

Presenters must upload a PDF of the poster to the online platform. Presenters are also invited to upload a 3 minute flash presentation to the platform. Uploading a flash presentation is mandatory for students that are in the student competition and that attend remotely. Questions to these presenters will be done through the chat function of the online platform.


Instructions for posters uploaded to the online platform:


- PDF format
- Portrait orientation
- A4 size

Instructions for pre-recorded flash presentations:

- All files must be in MP4 H264 Format and HD 1080p resolution
- Video length: 3 minutes
- Slideshow with audio and recording of presenter in corner of the screen so that the material presented is not hidden behind the recording of the presenter
- Peak Bit Rate: 10 Mbps
- Aspect Ratio: 16:9 Landscape
- File name extension: mp4
- 4 slides maximum for the flash presentation.

Authors should introduce themselves in the beginning of the presentation and point out the main findings of their work. Hence the presentation should not include new material that is not shown on your poster.

CONFERENCE ORGANIZERS

Local organization by imec - Ghent University Tel: +32-9-264 33 21 Fax: +32-9-264 99 69

Lawson Health Research Institute BioEM Website, Communication and Meeting Support

Abstract submission, abstract review and assignment, email campaigns, program and abstract books, Arthur Pilla and Student award judging, and meeting survey

Astrid Chamson-Reig, PhD Jeffrey Carson, PhD

Lawson Health Research Institute 268 Grosvenor Street London, Ontario, Canada, N6A-4V2 office@bioem.org office@bems.org

Technical Program

Monday September 27, 2021

Opening and welcome Monday September 27, 2021 • 08:00 - 09:00 Einstein

Session: P1 Plenary 1 - 5G Overview and what Next Monday September 27, 2021 • 09:00 - 10:00 Einstein Chairs: Micaela Liberti & Wout Joseph

P1-1 [09:00]

5G Overview and what Next

Rahim Tafazolli

¹Department of Electrical and Electronic Engineering, University of Surrey, Guildford, United Kingdom, GU2 7XH

Biographical sketch

Rahim Tafazolli is Regius Professor of Electronic Engineering, Fellow of Royal Academy of Engineering, (FREng), FIET, Fellow of WWRF, Professor of Mobile and Satellite Communications, Founder and Director of 5GIC, 6GIC and ICS (Institute for Communication System) at the University of Surrey. He has over 30 years of experience in digital communications research and teaching. He has authored and co-authored more than 1000 research publications and is regularly invited to deliver keynote talks and distinguished lectures to international conferences and workshops. He was an Advisor to the Mayor of London in regard to the London Infrastructure Investment 2050 Plan. He has given many interviews to international media in the form of television, radio interviews, and articles in

international press.

Abstract

5G vison started in 2015 and is currently being standardised and deployed in many countries. 5G is expected to serve the market needs until 2040 when it is expected to mature in terms of capacity. It will be able to support, in addition to mobile broadband, communications between machines of different capabilities with high reliability for mission critical applications and mass connectivity for large number of Internet of Things (IoT). These new capabilities together with guaranteed low latency are main differentiation between 5G and previous generation of mobile systems where main objectives was mainly provision of mobile communications. The talk will provide an overview of wireless/mobile system evolution from 1G to 5G, their justifications and use cases behind such evolution. In more details it will cover full 5G use cases and its key important capabilities, priority frequency bands of operation and technical specifications of New Radio (NR) as specified by 3GPP Release 15 and beyond. In the talk where appropriate 5G NR is compared with that of 4G. The 5G standardisation roadmap and the agenda on evolution and optimisation 5G will also be discussed . The talk will finish with what will be next in 2030 and beyond which is commonly referred to as 6G. New research challenges that 6G will bring about and some interesting use cases expected in 6G era will be presented.

Coffee Break Monday September 27, 2021 • 10:00 - 10:30

Session: S01 Dosimetry 1 (Measurements) Monday September 27, 2021 • 10:30 -12:00 Einstein Chairs: Gernot Schmid & Gunter Vermeeren

S01-1 [10:30]

Influence of beamforming on local exposure to massive MIMO 5G base stations

Thomas Kopacz¹, Christian Bornkessel², Matthias

Wuschek³, Sascha Schiessl¹, Anna-Malin

Schiffarth¹ & Dirk Heberling^{1, 4}

¹Institute of High Frequency Technology, RWTH Aachen University, Aachen, Germany, 52074

²*RF* & *Microwave Research Laboratory, TU Ilmenau, Ilmenau, Germany*

³Faculty of Electrical Engineering and Media Technology, Deggendorf Institute of Technology, Deggendorf, Germany

⁴Fraunhofer Institute for High Frequency Physics and Radar Techniques, Wachtberg, Germany Keywords: Dosimetry (measurements), RF/Microwaves, Work in Progress Presented by: Thomas Kopacz

This paper deals with the impact of beamforming antennas on the local downlink exposure in a 5G network. Field strength measurements show that the local exposure maximum in a 5G cell changes according to the location of a moving user equipment (UE). When carrying out a download, the local exposure mainly depends on the azimuth angle between UE and 5G antenna. The impact is the strongest in the main lobe of the beams and reduces in the side lobes. In contrast, a comparison to passive antennas of a 4G base station on the same site shows that the local exposure in the cell is independent of the current location of the active UE. Session: S02 Electroporation 1 Monday September 27, 2021 • 10:30 -12:00 Maxwell Chairs: Richard Nuccitelli & Delia Arnaud-Cormos

S02-1 [10:30] Young Scientist

Simulation and In-vitro study of nanosecond electric pulse effect on cancerous cells and normal cells

Xin Rao¹, Xiaodong Chen^{1, 2}, Lingling Sun¹, Jun Liu¹, Liyang Yu¹, Keqiang Yue¹, Guodong Su¹, Wen Dang², Jun Zhou³ & Peidu Jiang⁴

¹Circuits and Systems Key Laboratory of the Ministry of Education, Hangzhou Dianzi University, Hangzhou, China, 310018

²School of Electronic Engineering and Computer Science, Queen Mary University of London, London, United Kingdom, E1 4NS

³School of Electronic Science and Engineering, University of Electronic Science and Technology of China, Chengdu, China, 610054

⁴School of Medicine, University of Electronic Science and Technology of China, Chengdu, China, 610054

Keywords: In vitro, Pulsed, Completed (unpublished) Presented by: Xin Rao

In order to address the possible side effects in this therapy, we have studied the selectivity ofnanosecond pulsed electric field (nsPEF)on cancer cells and normal cells by using 2D EM simulation and in-vitro experiments. The 2D EM simulation on two cell models is conducted for studying the distribution of nsPEF in the different sub-cell structures. Then, the nsPEF is applied toB16 cells andL929 cells. respectively. Thefluorescence-activated cell sorting shows the selectivity of nanosecond pulse stimulation on cancer cells and normal cells in terms of apoptosis. The obtained results could be helpful for designing future nanosecond pulse stimulation therapies and

S01-2 [10:45]

RF Exposure levels from mobile phone base stations in outdoor environment and an underground mall in Japan

Teruo Onishi¹, Miwa Ikuyo¹, Kazuhiro Tobita¹, Sen Liu¹, Masao Taki¹ & Soichi Watanabe¹

¹Electromagnetic Compatibility Laboratory, National Institute of Information and Communications Technology, Koganei, Japan, 1848795 Keywords: Dosimetry (measurements), RF/Microwaves, Completed (unpublished) Presented by: Teruo Onishi

The new project of acquisition, accumulation, and applications of EMF exposure monitoring data in Japan was started in 2019. The aim of this study is to get the comprehensive picture of exposures to EMF in real daily lives in Japan. In 2019 and 2020, we measured the electric field strengths in the same areas as the measurements conducted in 2006 and 2007 and compared these data in order to investigate time-course of EMF environment. The results show that the overall tendency that the E-field strength is larger in the urban area including the mall than in the suburban area. It is also obvious that E-field strength increases from 2006/2007, especially in the underground mall.

S01-3 [11:00] Young Scientist

Assessment of 5G NR base station RF-EMF exposure in a commercial network in Switzerland

Sam Aerts¹, Kenneth Deprez¹, Davide Colombi², Matthias Van Den Bossche¹, Leen Verloock¹, Luc Martens¹, Christer Tornevik² & Wout Joseph¹

¹Department of Information Technology, Ghent University / imec, Ghent, Belgium, 9052

²Ericsson Research, Ericsson AB, Stockholm, Sweden, 16480

Keywords: Dosimetry (measurements), RF/Microwaves, Completed (published) Presented by: Sam Aerts

The results of a measurement campaign to assess

S02-2 [10:45] Young Scientist

Nanosecond pulsed electric fields activate the inflammasome in macrophages: the role of potassium in this complex scenario

Flavia Mazzarda¹, Julia L. Pittaluga¹, Esin B. Sözer¹, Alexandra E. Chittams¹, P. Thomas Vernier¹ & Claudia Muratori¹

¹*Frank Reidy Research Center for Bioelectrics, Old Dominion University, Norfolk, VA, USA, 23508 Keywords: Electroporation, Pulsed, Work in Progress*

Presented by: Flavia Mazzarda

It is well known that electroporation is a potent tool for tumor ablation, but its impact on immunogenic response in the tumor microenvironment is still poorly understood. Our results showed that nanosecond pulsed electric fields (nsPEF) are able to activate the NLRP3 inflammasome, a multiprotein innate immunity platform, that promotes maturation of proinflammatory IL-1ß upon detection of pathogens and dangerous signals evoked by cellular stress. Interestingly, the mechanisms of inflammasome activation mirror bio-effects of nsPEF (such as K⁺ efflux). Studvina the inflammasome activation in response to nsPEF will be crucial for developing new implementations of electroporation in cancer therapy.

S02-3 [11:00]

Histopathology of Nano-Pulse Stimulation treatment of porcine skin supports the findings of epidermal regeneration leading to acceptable healing within 30 days

Holly Hartman¹, Dave Danitz¹, Richard Connolly¹, Bill Stoffregen², William Knape¹ & Richard Nuccitelli¹

¹*Research and Development, Pulse Biosciences, Hayward, CA, USA, 94545*

²Pathology, Northstar Preclinical and Pathology Services, Lake Elmo, MN, USA, 55052 **Keywords: Electroporation, Pulsed, Completed** (unpublished) **Presented by: Richard Nuccitelli**

We conducted two studies treating porcine skin with

radiofrequency (RF) electromagnetic field (EMF) exposure in a commercial 5G New Radio (NR) network in Bern, Switzerland, are presented. Four base station sites with massive MIMO antennas were surveyed, which operated at 3.6 GHz and used codebook-based beamforming. The present field levels were very low (< 0.05 V/m) due to low traffic load and low configured antenna powers. However, setting up a maximum downlink traffic stream towards a user device increased the timeaveraged exposure level to up to 0.4 V/m. Finally, it was found that the contribution of the NR network to the environmental RF exposure was limited to an average of 2% with maximum downlink traffic.

S01-4 [11:15]

Design of a low specific absorption rate microstrip patch antenna for 5G (n78 band) smart devices applications

Md. Abu Sufian¹, Batchingis Bayarzaya¹, Jaemin Lee¹, Seong Gyoon Park² & Nam Kim¹

¹Information and Communication Engineering, Chungbuk National University, Cheongju, Korea, 28609

² Information and Communication Engineering, Kongju National University, Cheongju, Korea **Keywords: In vivo, RF/Microwaves, Work in Progress**

Presented by: Md. Abu Sufian

A metasurface-based microstrip patch antenna with a low Specific Absorption Rate (SAR), has been presented for 5G sub-6 GHz applications. The aimed frequency band is n78 (3.4 - 3.8 GHz) because this range is the most used frequency range all over the world for sub-6 GHz 5G communications systems. The Specific Absorption Rate (SAR) is calculated for 1 g tissue at 0 mm distance from the human head instead of 10 mm, which is stricter than the international standard. Compared with the international standard SAR value (1.6 W / kg), the proposed antenna showed a 77.8% reduction in SAR_{1g} at 0 mm distance, without using any extra back reflector.

Nano-Pulse Stimulation (NPS) energy delivered by the CellFX® System (Pulse Biosciences, Hayward, CA) to characterize the histological response to reference two other ablation modalities. cryoablation and electrodessication. NPS treatment induces degeneration and necrosis of the cellular elements of the epidermis and dermis within 2 days followed by epidermal regeneration over the next 12 days. There was no evidence of thermal damage of the NPS treatment sites at any time point. Resolution of histological treatment effects of the epidermis, dermis, and subcutis occurs by 30 days after treatment consistent with complete and acceptable healing.

S02-4 [11:15] STUDENT PAPER

High throughput electroporation microsystem using sine wave bursts to deliver biomolecules into cell spheroids

Pauline Bregigeon¹, Marie Frénéa-Robin¹,

Charlotte Rivière², Laure Franqueville¹, Christian Vollaire¹ & Julien Marchalot¹

¹*Ampère, UMR5005, Ecole Centrale de Lyon, INSA Lyon, Université Claude Bernard Lyon 1, Ecully, France, 69130*

²Institut Lumière Matière, Claude Bernard Lyon 1 University, CNRS, F-69622, Villeurbanne, France, 69100

Keywords: Electroporation, Pulsed, Completed (unpublished)

Presented by: Pauline Bregigeon

Reversible electroporation (EPN) is a method for introducing molecules into cells without permanent damage based on the application of pulsed electric fields. The development of innovative in vitro assays exploiting 3D cell models such as spheroids can be of great help to assess the potential of cancer treatments based on EPN. The parallel treatment of tens of spheroids of similar characteristics (size, shape) is required to produce statistical data. To address this challenge, we designed a microfluidic platform enabling culture and electroporation of a large number of spheroids sharing similar characteristics without requiring any manipulation. Here, we demonstrate the delivery of an anti-cancer agent in spheroids using sine wave bursts.

S01-5 [11:30]

Numerical assessment of the spatiotemporal duty cycle of 5G Massive MIMO in an outdoor urban environment using radio-frequency Ray-Tracing

Sergei Shikhantsov¹, Arno Thielens¹, Gunter Vermeeren¹, Emmeric Tanghe¹, Piet Demeester¹, Guy Torfs¹, Luc Martens¹ & Wout Joseph¹ ¹Department of Information Technology, Ghent University/IMEC, Ghent, Belgium, 9000 Keywords: Dosimetry (computational), RF/Microwaves, Completed (published) Presented by: Sergei Shikhantsov

This work presents a numerical method of estimation a realistic time-averaged antenna array pattern of a massive MIMO base station (BS). The Ray-Tracing is used to calculate the propagation in a large number of stochastically generated environments modelling an outdoor urban scenario. The antenna patterns are averaged over a 6 and 30 minute intervals and evaluated for varying number of the BS antennas and active users, as well as different transmit precoding/beamforming schemes. It is shown that the realistic average maximum gain can be as low as 6% of the theoretical maximum when the interference-cancelling Massive MIMO precoding, and around 13% in case of a codebook beamforming, measured as a 95th percentile of the sample distribution.

S01-6 [11:45] STUDENT PAPER

Protocol for 5G Personal RF-EMF Exposure assessment

Maarten Velghe¹, Sam Aerts¹, Luc Martens¹, Wout Joseph¹ & Arno Thielens¹

¹Department of Information Technology, Ghent University/IMEC, Ghent, Belgium, 9052 Keywords: Dosimetry (measurements),

RF/Microwaves, Completed (published) Presented by: Maarten Velghe

activity-based А new protocol for 5G microenvironmental measurements and survey studies for the assessment of personal RF-EMF assessment is proposed. This protocol provides a necessary update to reliably assess exposure in 5G

S02-5 [11:30] STUDENT PAPER

Enhanced imaging of nanosecond electric pulse-evoked Ca²⁺ responses in adrenal chromaffin cells isolated from transgenic mice expressing the Ca²⁺ indicator GCaMP6f

Ciara Viola¹, Thomas Gould², Nicole Procacci²,

Normand Leblanc¹ & Gale Craviso¹

¹Department of Pharmacology, University of Nevada, Reno, Reno, NV, USA, 89557

²Department of Physiology and Cell Biology. University of Nevada, Reno, Reno, NV, USA, 89557 Keywords: In vitro, Pulsed, Work in Progress Presented by: Ciara Viola

Exposing bovine adrenal chromaffin cells to a 5 ns, 5 MV/m pulse causes a rapid rise in intracellular Ca²⁺due to voltage-gated Ca²⁺channel-mediated Ca²⁺influx. To work toward studying effects on cells in adrenal tissue slices, we generated transgenic genetically-encoded mice expressing the fluorescent Ca²⁺reporter GCaMP6f in chromaffin cells. Ca²⁺responses evoked by a 5 ns pulse or nicotinic receptor agonist were similar in bovine vs wild-type murine cells loaded with Calcium Green-1, and in dye-loaded wild-type vs GCaMP6fexpressing murine cells, except that Ca²⁺responses were much more robust in GCaMP6f-expressing cells, an advantage for studying stimulus-evoked and spontaneous Ca²⁺transients in isolated cells and in tissue.

S02-6 [11:45] STUDENT PAPER

Numerically predicted irreversible electroporation ablation of hepatic tumors compared to MRI imaging – a retrospective study

Helena Cindric¹, Panchatcharam Mariappan², Lukas Beyer³, Philipp Wiggermann⁴, Michael Moche⁵, Damijan Miklavčič¹ & Bor Kos¹

¹Laboratory of Biocybernetics, Faculty of Electrical Engineering, University of Ljubliana, Ljubliana, Slovenia, 1000

²Department of Mathematics and Statistics, Indian Institute of Technology Tirupati, Tirupati, India, 517506

technologies, as it addresses the main challenges to personal exposure measurements introduced by 5G NR. A systematic method to evaluate a user's auto-induced exposure is introduced by using an activity-based approach. ³Department of Diagnostic and Interventional Radiology, Ernst von Bergmann Hospital, Potsdam, Germany, 14467

⁴Institute of Radiology and Nuclear Medicine, Hospital Braunschweig, Braunschweig, Germany, 38118

⁵Department for Interventional Radiology, Helios Park-Klinikum Leipzig, Leipzig, Germany, 04289 **Keywords: Electroporation, Pulsed, Completed** (published) **Presented by: Helena Cindric**

Irreversible electroporation (IRE) ablation is a relatively new modality for ablation of various deepseated tumors such as in the liver. A previously developed numerical framework for planning of electroporation-based treatments was used to numerically reconstruct 18 clinical cases of IRE ablation of hepatic tumors. Computed treatment outcomes (ablation volumes) were compared to ablation volumes segmented from 6-week follow-up MRI. The aim of this retrospective study was to determine the threshold value of computed electric field that best fits the local response to IRE ablation of hepatic tumors as seen in follow-up MRI. A future prospective study can be effectively designed based on the findings of this study.

Lunch Monday September 27, 2021 • 12:00 - 13:00

Session: M1 Merger General Meeting Monday September 27, 2021 • 13:00 - 14:00 Einstein

Session: FS Student Flash Poster Session Monday September 27, 2021 • 14:00 - 15:00 Einstein Chairs: Florence Poulletier De Gannes & Martin Röösli

> Session: PS Poster Session Monday September 27, 2021 • 15:00 - 16:30 Flex Meet

Coffee Break Monday September 27, 2021 • 16:30 - 17:00

Session: W1 Workshop 1 - Local exposure in the context of risk assessment: Theory and practical demonstration Monday September 27, 2021 • 17:00 - 19:00 Einstein Chairs: Ilkka Laakso & Gernot Schmid

W1-1 [17:00]

Workshop Introduction

Peter Jeschke¹, Klaus Schiessl³, Carsten Alteköster², Benjamin Vatovez⁵, Gernot Schmid⁴ & Rene Hirtl⁴ ¹Physical Agents, Federal Institute for Occupational Safety and Health, Dortmund, Germany, 44149 ²Institute for Occupational Safety and Health of the German Social Accident, St. Augustin, Germany, 53757 ³Austrian Workers' Compensation Board (AUVA), Wien, Austria, 1200 ⁴Seibersdorf Laboratories, Seibersdorf, Austria, 2444

⁵Scientific Institute of Public Service, Liege, Belgium, 4000

This fundamentals workshop aims to provide an insight into sources with local exposure, the physics and physiology of near field exposure, regulative constraints, and assessment of local exposures in occupational as well as general public EMF settings. Up until a few years ago, localized exposure was of interest only to the domain of occupational EMF exposure. Only recently, with innovations around smartphones and smart body worn devices localized exposures are becoming a matter of interest to the general public as well. Participants of all backgrounds are invited to gain a good understanding of the topic of localized exposure.

W1-2 [17:05]

Fundamental aspects of localized EMF exposure

Carsten Alteköster¹

¹Institute for Occupational Safety and Health of the German Social Accident , St. Augustin, Germany, 53757

If an assessment is to be carried out with respect to risks arising from electromagnetic fields at the workplace, the requirements of the European Directive 2013/35/EU [1] or its national implementations must be applied in the EU. For this purpose, measured external field values can be compared to given action levels (ALs), which were again derived from internal exposure limit values (ELVs). ELVs must not be exceed in order to avoid adverse effects. It is assumed that the ELVs are met when it can be demonstrated that this is also true for the action levels.

W1-3 [17:20]

Worker's exposure close to sources of low-frequency magnetic fields: application of action levels

Klaus Schiessl¹, Rene Hirtl² & Gernot Schmid²

¹Austrian Workers' Compensation Board (AUVA), Wien, Austria, 1200

²Seibersdorf Laboratories, Seibersdorf, Austria, 2444

In particular in metal & heavy industry, some technologies involve close human contact to strong low-frequency magnetic field sources. Work place assessment thus needs to account for exposure in close

vicinity or contact with such sources. This contribution focuses on the spatial characteristics of the magnetic field, gives some examples from industry and reviews the conditions under which an exposure assessment may still be relatively quickly performed by application of Action Levels. Some care is needed due to the finite spatial resolution of measurement equipment, particularly close to the source.

W1-4 [17:40]

International and European Regulation - occupational perspective

Peter Jeschke¹

¹Physical Agents, Federal Institute for Occupational Safety and Health, Dortmund, Germany, 44149

In European member states, the European EMF-Directive 2013/35/EU regulates the assessment of EMFexposure in occupational settings. Hereby, in the low frequency domain EMF-Directive builds upon ICNIRP [2010] where as in the radio frequency range upon ICNIRP [1998]. However, for special exposure situations like local exposure, both ICNIRP-Guidelines and EMF-Directive (including the related Non-Binding-Guide [EC, 2016]) have shortcomings. The shortcomings relate especially to the application of far field assumptions on actual near field exposure settings.

W1-5 [18:00]

International and European Regulation - general public perspective

Benjamin Vatovez¹

¹Scientific Institute of Public Service, Liege, Belgium, 4000

EMF exposure is a concern for a part of the population. As a result and in order to prevent possible adverse effects, international committees, such as ICNIRP [1998] and IEEE [1991], published guidelines for protecting health and safety in the case of occupational exposure and for limiting the general public exposure to EMF. Afterwards, the basic restrictions and reference levels of the 1998 ICNIRP guidelines have been adopted by the European Council to the 1999/519/EC Recommendation [European Council, 1999], with slight differences regarding the ICNIRP guidelines.

Tuesday September 28, 2021

Session: S03 Dosimetry 2 (Computational) Tuesday September 28, 2021 • 08:00 -09:45 Einstein Chairs: Emmanuelle Conil & Arno Thielens

S03-1 [08:00] STUDENT PAPER

Modeling accuracy of transcranial current stimulation: Static and quasi-static approximations errors

Gabriel Gaugain¹, Lorette Quéguiner¹, Maxim Zhadobov¹, Ronan Sauleau¹, Julien Modolo² &

Denys Nikolayev¹

¹UMR-6164, IETR (Institut d'Électronique et des Technologies du numéRique), Rennes, France, 35000

²LTSI U1099, LTSI (Laboratoire de Traitement du Signal et de l'Image), Rennes, France, 35000 Keywords: Dosimetry (computational), ELF/LF, Completed (unpublished) Presented by: Gabriel Gaugain

Transcranial current stimulation is a non-invasive brain stimulation technique producing electric fields in the brain using scalp electrodes. Modeling of electric field induced by transcranial current stimulation has been studied with static, quasi-static (QS) approximations and the full set of Maxwell's equations (i.e., full-wave approach, FW) in order to quantify the error due to these approximations. This comparison helps to choose an appropriate approximation depending on stimulation modalities. The QS approximation shall be preferred to the static one, especially for the field analysis in highpermittivity tissues. The results also show that the error is less than 1% below 10 MHz when comparing the QS approximation to FW modelling. Session: S04 In Vitro RF Tuesday September 28, 2021 • 08:00 -09:45 Maxwell Chairs: Mats-Olof Mattsson & György Thuroczy

S04-1 [08:00]

Evaluation of inactivation of bovine coronavirus by low-level radiofrequency irradiation

Jody Cantu¹, Bennett Ibey², Joseph Butterworth¹,

Kevin Mylacraine², Bryan Gamboa², Leland

Johnson², Robert Thomas³, Jason Payne², William

Roach⁴ & Ibtissam Echchgadda²

¹Air Force Research Laboratory, General Dynamics Information Technology, JBSA Fort Sam Houston, Texas, USA, 78234

²Air Force Research Laboratory, 711th Human Performance Wing, Airman Systems Directorate, Bioeffects Division, Radio Frequency Bioeffects Branch, JBSA Fort Sam Houston, Texas, USA, 78234

³Air Force Research Laboratory, 711th Human Performance Wing, Airman Systems Directorate, Bioeffects Division, JBSA Fort Sam Houston, Texas, USA, 78234

⁴Air Force Office of Scientific Research, Alr Force Research Laboratory, Arlington, VA, USA, 22203 **Keywords: In vitro, RF/Microwaves, Completed (unpublished)**

Presented by: Jody Cantu

Previous studies showed inactivation of viruses by irradiation with radiofrequency (RF) energy at levels below IEEE safety thresholds, suggesting potential use of RF technology as an epidemic prevention strategy in open public space. The present study investigates inactivation of a coronavirus surrogate (bovine coronavirus, BCoV) by RF energy (6–12 GHz). Results showed an appreciable reduction in BCoV infectivity due to RF exposure to certain frequencies, suggesting that, while RF can partially neutralize BCoV, the specific conditions used in this study may not be effectively applicable for virus decontamination. Future studies will optimize the exposure conditions for complete neutralization.

S03-2 [08:15] STUDENT PAPER

Numerical RF dosimetry in reverberation chamber exposure systems employed for invivo rodents bioassays

Antonio Di Francesco^{1, 2}, Valerio De Santis¹,

Kenneth Foster³, Giorgi Bit-Babik⁴ & Antonio Faraone⁴

¹Department of Industrial and Information Engineering and Economics, University of L'Aquila, L'Aquila, Italy, 67100

²Department of Information Engineering, Computer Science and Mathematics, University of L'Aquila, L'Aquila, Italy, 67100

³Department of Bioengineering, University of Pennsylvania, Philadelphia, Pennsylvania, USA, PA 19104-6391

⁴*Motorola Solutions Inc., Fort Lauderdale, Florida, USA, FL* 33322-9947

Keywords: Dosimetry (computational), RF/Microwaves, Work in Progress Presented by: Antonio Di Francesco

A numerical approach for the characterization of whole-body SAR variability in large rodent cohorts exposed to RF energy in reverberation chambers is proposed. Such an approach involves the accurate synthesis of 3D electromagnetic fields fulfilling the Rayleigh scattering properties, the definition of homogeneous rodent models, over a predefined mass distribution, assuming varying postures and positions within individual plastic cages inside the chamber, and finally the derivation of whole-body SAR statistics. The proposed methodology is illustrated with reference to data available from the US National Toxicology Program rodent bioassay reports (adult male rats).

S03-3 [08:30] STUDENT PAPER

Computational analysis of magneto- and electrophosphene thresholds

Janita Nissi¹ & Ilkka Laakso^{1, 2}

¹Department of Electrical Engineering and Automation, Aalto University, Espoo, Finland

²Aalto Neuroimaging, Aalto University, Espoo, Finland

Keywords: Dosimetry (computational), ELF/LF, Work in Progress

S04-2 [08:15] STUDENT PAPER

Impact of environmental radiofrequency fields on the autophagic response of human colon carcinoma cells

Alexandre Joushomme¹, Mélody Dufossée², Delia Arnaud-Cormos³, Annabelle Hurtier¹, Florence Poulletier De Gannes¹, Muriel Priault², Philippe Levegue³, Isabelle Lagroye^{1, 4} & Yann

Percherancier¹

¹Équipe de bioélectromagnétique, Laboratoire d'intégration du matériau au système, Bordeaux, France, 33400

²*Mitochondria, Stress and Cell Death, Institut de Biochimie et Génétique Cellulaires, Bordeaux, France, 33000*

³Équipe de Bioelectromagnétique, Institut de recherche XLIM, Limoges, France, 87060

⁴PLS rescherch Uninersty/EPHE, Paris, France, 75014

Keywords: In vitro, RF/Microwaves, Completed (unpublished)

Presented by: Alexandre Joushomme

Whether exposure to environmental radiofrequency signals (RF) may impact cell stress response such as autophagy remains an open question. Here, we studied autophagy using Digital holographic microscopy (DHM). This imaging method allows for the measurement of cellular thickness, volume, and area in real-time on attached cell cultures. We show in this study that the cell area increases strongly following the induction of autophagy, then decreases over time. We also show that the continuous and GSM-modulated 1800 MHz signals at 1.5 and 6 W / kg have no impact on this autophagic response.

S04-3 [08:30]

Gene responses to GSM-1800 MHz electromagnetic field in microglia and bone marrow-derived macrophages

Julie Lameth¹, Delia Arnaud-Cormos², Philippe

Leveque², Jean-Marc Edeline³, Matthieu Ribon¹, Severine Boillée¹ & Michel Mallat¹

¹Institut du cerveau-Paris Brain Institute - ICM, Sorbonne Universités, INSERM, CNRS, AP-HP, Paris, France, 75013

Presented by: Janita Nissi

Phosphenes are visions of light produced without light entering the eye. When phosphenes are caused by time-varying magnetic fields or electric currents thev are called magnetoor electrophosphenes. In this work, phosphene thresholds were approximated by simulating four phosphene threshold experiments. Retinal electric fields and currents induced by magnetic and electric stimulation were determined using the finite element method and anatomically realistic computational models of human heads.

S03-4 [08:45] STUDENT PAPER

Theoretical analysis of electromagnetic exposure to wireless charging systems for deep-body implantable devices

Icaro Soares¹, Ronan Sauleau¹ & Denys

Nikolayev¹

¹IETR (Institut d'Électronique et des Technologies du numéRique) UMR–6164, Univ Rennes, CNRS, Rennes, France, 35700

Keywords: Dosimetry (computational), RF/Microwaves, Completed (unpublished) Presented by: Icaro Soares

Wireless Power Transfer (WPT) techniques allow significant miniaturisation of implanted medical devices. However, the electromagnetic exposure of the body tissues must be accurately accessed to ensure safe operation. This study, therefore, analyses the exposure induced by the magneticand electric-type antenna transmitters over the frequency range of 100-MHz-5-GHz. The normalised power absorption, specific absorption rate (SAR) and WPT efficiency are analysed and presented. The results demonstrate the existence of an optimal operating frequency at which the

²CNRS, XLIM, UMR 7252, Université de Limoges, Limoges, France, 87000

³Paris Saclay Institute of Neuroscience, Neuro-PSI, UMR 9197 CNRS, Université Paris-Sud, Orsay, France, 91405

Keywords: In vitro, RF/Microwaves, Completed (unpublished)

Presented by: Michel Mallat

We report effects of GSM-1800 MHz in primary cultures of microglia or bone marrow-derived macrophages. Cells were activated before GSM exposure by treating cultures with proinflammatory lipopolysaccharide (LPS) or with an oncometabolite released by glioma cells, or by using cells expressing a mutated human SOD1 gene responsible for inherited form of amyotrophic lateral sclerosis. We found that a 15h exposure of cells to GSM signal at SAR values of 1.5 W/kg or 0.65 W/kg could alter the level of transcripts encoding proinflammatory mediators or epigenetic regulators. The pattern of GSM-responsive genes strongly varied according to SAR level, cell type or activation. LPS-activated microglia displayed the broadest gene responses to GSM signal.

S04-4 [08:45]

Bystander effect in SHSY-5Y cells exposed to radiofrequency fields

Olga Zeni¹, Stefania Romeo¹, Anna Sannino¹,

Rosanna Palumbo² & Maria Rosaria Scarfi¹

¹Institute for Electromagnetic Sensing of the Environment (IREA), National Researcj Council (CNR), Napoli, Italy, 80124

²Institute for Biostructures and Bioimaging (IBB), National Researcj Council (CNR), Napoli, Italy, 80134

Keywords: In vitro, RF/Microwaves, Completed (published)

Presented by: Olga Zeni

This study aims to investigate the capability of the culture medium from SH-SY5Y neuroblastoma cells exposed to radiofrequency (RF, 1950 MHz, UMTS signal, 0.3 W/kg) to elicit, in recipient non-exposed cells, a reduction of menadione-induced DNA damage, indicating a bystander effect. This reduction was also detected in cultures directly exposed to the same conditions, confirming previous studies on the adaptive response. We also evidenced an increase of heat shock protein 70 in culture medium of RF-exposed cells. On the whole,

maximum efficiency, minimum power absorption, and low SAR are simultaneously observed.

S03-5 [09:00] STUDENT PAPER

3D microdosimetric study on cells and organelles realistic models: spectral response at cellular and subcellular level

Laura Caramazza^{1, 2}, Annalisa De Angelis², Zain Haider³, Maxim Zhadobov³, Franck Andre⁴, Lluis M. Mir⁴, Francesca Apollonio^{1, 2} & Micaela Liberti¹, 2

¹DIET@Sapienza University of Rome, Sapienza University of Rome, Rome, Italy, 00184

²Center for Life Nano- & Neuro-Science, Fondazione Istituto Italiano di Tecnologia (IIT), Rome, Italy, 00161

³University of Rennes, CNRS, IETR, Rennes, France

⁴CNRS, Univ. Paris-Sud, Université Paris-Saclay, Gustave Roussy, Villejuif, Paris, France Keywords: Dosimetry (computational), RF/Microwaves, Work in Progress Presented by: Laura Caramazza

Radio frequency electromagnetic fields (RF EMFs) used increasingly in are emerging telecommunication technologies such as wireless power transfer (WPT) and 5G millimeter-wave (mm-Wave) technologies, rising a consequent concern about safety. In the framework of health protection, microdosimetric studies provide the electric field local distribution on cells and intracellular structures. In this work authors give a quantitative evaluation of the EMFs interaction with cells, using a 3D microdosimetric model with a realistic shape of cell and organelles (i.e. endoplasmic reticulum and nucleus) and a dispersive behavior. As expected, cell response to EMFs exposure strictly depends on: (i) EMFs frequency; (ii) biological material shape and size.

RF seems to induce a protective effect in directly and non-directly exposed cells, and suggest hsp70 pathway as one of the potential candidates at the basis of the pbserved phenomena.

S04-5 [09:00]

Protocol and pilot study for a systematic review on genotoxicity of RF-EMF *in vitro*

Stefania Romeo¹, Olga Zeni¹, Anna Sannino¹,

Loredana Poeta¹, Susanna Lagorio², Mauro Biffoni²

& Maria Rosaria Scarfi¹

¹Institute for Electromagnetic Sensing of the Environment (IREA), National Researcj Council (CNR), Napoli, Italy, 80124

²Department of Oncology and Molecular Medicine, National Institute of Health, Roma, Italy, 00161 Keywords: In vitro, RF/Microwaves, Completed (published) Presented by: Stefania Romeo

The objective of this study was to develop a protocol for a systematic review of in vitro studies on genotoxicity of radiofrequency electromagnetic fields (EMF). We followed the guidelines developed by the National Toxicology Program-Office of Health Assessment and Translation (NTP-OHAT), adapted to the peculiarities of in vitro investigations and EMF exposures. We piloted our approach on a subset of studies. To our knowledge, this is the first protocol for systematic reviews of mechanistic studies with an in vitro exposure regime, with predefined inclusion criteria and risk of bias assessment.

S03-6 [09:15]

Evaluating optimal strategies for electric field dosimetry from intracranial electrodes

Borja Mercadal¹, Fabiola Alonso², Denys

S04-6 [09:15]

Ambient magnetic fields within a standard incubator do not alter the antiproliferative effect of hepatocellular carcinoma-specific AM RF EMF Nikolayev³, Ricardo Salvador¹, Julien Modolo²,

Fabrice Bartolomei⁴, Fabrice Wendling² & Giulio Ruffini¹

¹Neuroelectrics, Barcelona, Spain, 08035

²Laboratoire de Traitement du Signal et de l'Image, Univ Rennes, Rennes, France, 35000

³IETR (Institut d'Électronique et des Technologies du numérique), Univ Rennes, Rennes, France, 35000

⁴*Clinical Physiology Department, INSERM, UMR* 1106 and Timone University Hospital, Aix-Marseille Université, Marseille, France

Keywords: Dosimetry (computational), Static, Work in Progress Presented by: Borja Mercadal

Intracranial electrodes are used clinically for diagnostic (e.g. in drug-refractory epilepsy) or therapeutic (deep brain stimulation, e.g. epilepsy) purposes. Electrical stimulation delivered through such electrodes is key to understand how the resulting electric fields modulate neuronal (hyper)excitability. However, quantifying such fields in a patient-specific way is challenging, since etiology impacts brain anatomy (morphology) and biophysical properties (e.g., conductivity). Here, we evaluate how to approximate the electric fields from intracranial electrodes used clinically. Those results are the first step towards computationally tractable, patient-specific models of electric fields generated during neuromodulation protocols.

S03-7 [09:30] Young Scientist

Combining TMS, MRI and computational dosimetry: the effective navigated (En-)TMS

Micol Colella¹, Alessandra Paffi¹, Letizia Bellizzi², Filippo Carducci³, Francesca Apollonio¹ & Micaela Liberti¹

¹Department of Information Engineering, Electronics and Telecommunications, University of Rome La Sapienza, Rome, Italy, 00184

²Sentech S.r.I, Rome, Italy, 00188

³Laboratorio di Neuroimmagini, University of Rome La Sapienza, Rome, Italy

Keywords: Dosimetry (computational), Pulsed, Completed (unpublished) Presented by: Micol Colella Hugo Jimenez^{1, 2}, Kimberly Sheffield^{1, 2}, Preeya Achari^{1, 2}, Callum Mcgrath^{1, 2}, Alexandre Barbault³, Ivan Brezovich⁴, Carl Blackman^{1, 2} & Boris Pasche^{1, 2}

¹Department of Cancer Biology, Wake Forest Baptist Medical Center, Winston-Salem, North Carolina, USA, 27157

²Comprehensive Cancer Center, Wake Forest Baptist Medical Center, Winston-Salem, North Carolina, USA, 27157

³*TheraBionic GmbH, Ettlingen, Germany*

⁴Department of Radiation Oncology, University of Alabama at Birmingham, Birmingham, Alabama, USA, 35294

Keywords: In vitro, RF/Microwaves, Work in Progress

Presented by: Hugo Jimenez

We have shown that 27.12 MHz amplitude modulated (AM) electromagnetic fields (EMF) inhibit proliferation of tumor growth in patients, in tumor xenografts, and in cancer cell lines. We tested the hypothesis that environmental EMFs alter tumorspecific AM RF EMF antiproliferative effects on hepatocellular Huh7, Hep3B, and SNU-423 carcinoma cell lines. We placed cells in an incubator (Forma Scientific incubator, model# 3110, Marietta, OH) with either no special shielding or with shielding by a Mu-metal box that blocked environmental EMFs. We found that the Mu-metal box (MMB) did not alter AM RF EMF antiproliferative effects.

S04-7 [09:30]

An *In Vitro* exposure system for 5G mm-wave experiments

Myles Capstick¹ & Niels Kuster^{1, 2}

¹*Foundation for Research on Information Technologies in Society (IT'IS), Zurich, Switzerland, CH-8004*

²Department of Information Technology and Electrical Engineering, Swiss Federal Institute of Technology (ETH Zurich), Zurich, Switzerland, CH-8092

Keywords: In vitro, RF/Microwaves, Work in Progress

Presented by: Myles Capstick

This paper details our development of a 5G mmwave exposure system at 27.5 GHz for experiments We developed an electromagnetic simulation software for future navigated (n-)TMS applications that take into account an anatomically shaped, patient-specific. volumetric head model with anistropic brain tissue. Such model can be obtained from MRI and DTI information. The software was tested considering a commercial figure-8 coil placed over M1 and results showed that considering the anisotropic properties of the brain can influence the induced E-field calculation. with differences between the isotropic and anisotropic solution up to 30%.

Session: S05 Dosimetry 3 (Measurements) Tuesday September 28, 2021 • 09:45 -11:00 Einstein Chairs: Marco Zahner & Wout Joseph

S05-1 [09:45]

Assessing exposure to low frequency magnetic fields in a broad frequency range using fftbased personal exposimeters: The issue of spectral noise

Jens Kuhne¹, Andreas Deser¹, Peter Hofmann¹ & Dirk Geschwentner¹

¹Department effects and risks of ionizing and nonionizing radiation, Federal Office for Radiation Protection, Oberschleißheim, Germany Keywords: Dosimetry (measurements), ELF/LF, Work in Progress Presented by: Jens Kuhne

The exposure of the general public to low frequency magnetic fields can be assessed using body worn personal exposimeters (PEM). In Germany, a large study with 1952 participants in Bavaria has been conducted 1996/1997 with PEM capable of two measuring magnetic fields at distinct frequencies, namely 16.7 and 50 Hz [Brix et al, 2001]. In order to update this low frequency exposure data and to generate data that is representative for the German population a new study is planned.

in cell cultures. The system comprises a custom lens antenna with circular polarization and gain profile designed to provide excellent incident field homogeneity across six 25cm² cell culture flasks for adhered cells. By illuminating the flasks from below, the system achieves state of the art specific absorption rate (SAR) homogeneity in the adhered cells, close to the best performance achieved for systems below 3 GHz while being small enough to have exposed and control cell cultures in the same incubator.

Session: S06 In Vivo Tuesday September 28, 2021 • 09:45 -11:00 Maxwell Chairs: Rene De Seze & Florence Poulletier De Gannes

S06-1 [09:45] STUDENT PAPER

Influence of extremely low frequency magnetic fields on the development of childhood leukemia – An experimental study in a susceptible mouse model

Dmitrij Sachno¹, Saskia Carstensen¹, Franziska Dahlmann¹, Thomas Tillmann¹, Achim Bahr², Michael Wleklinski², Dirk Schaudien¹, Susanne Rittinghausen¹, Katherina Sewald¹, Meike Mueller¹, Clemens Dasenbrock¹ & Annette Bitsch¹

¹*Fraunhofer Institute for Toxicology and Experimental Medicine, Hannover, Germany, 30625*

²IMST GmbH, Kamp-Lintfort, Germany, 47475 Keywords: In vivo, ELF/LF, Work in Progress Presented by: Dmitrij Sachno

Childhood leukemia arises from interactions between genetic susceptibility and exogenous, environmental exposures. To elucidate a possible effect of 50 Hz magnetic fields on the developing immune system of Sca1-ETV6-RUNX1 mice, exposure was started during pregnancy and continued after birth. On postnatal day 7, 14 or 28 animals were sacrificed for deep а immunophenotyping of major lymphatic organs. A first evaluation of the flow cytometry data revealed alterations in the expression of the TCR- β chain on

S05-2 [10:00]

What has been the impact of Covid-19 on the environmental exposure to RF-EMF?

Sam Aerts¹, Shanshan Wang², Luis Díez³, Christos

Apostolidis⁴, Serafeim lakovidis⁴, Athanasios

Manassas⁴, Ramón Agüero³, Joe Wiart², Wout Joseph¹ & Theodoros Samaras⁴

¹Department of Information Technology, Ghent University / imec, Ghent, Belgium, 9052

²Chaire C2M, Télécom Paris, Palaiseau, France, 91120

³Department of Communications Engineering, Universidad de Cantabria, Santander , Spain, 39005

⁴CIRI - Center for Interdisciplinary Research and Innovation, Aristotle University of Thessaloniki, Thermi, Greece, 57001

Keywords: Dosimetry (measurements), RF/Microwaves, Work in Progress Presented by: Sam Aerts

Mid-March 2020, nation-wide lockdowns were instated in several European countries to reduce the spread of the COVID-19 pandemic. In this study, the impact of these lockdowns on the environmental radiofrequency (RF) electromagnetic field (EMF) exposure is investigated, using data from EMF monitoring networks in four European countries: Belgium, France, Greece, and Spain. It was generally observed that sensors positioned in a distinct type of microenvironment (e.g. residential) measured EMF exposure patterns that followed the mobility trends of that microenvironment. However, this correlation also depended on the frequency band and the country.

S05-3 [10:15]

Development of a web-based assessment tool for occupational magnetic field exposure in the vicinity of resistance spot welding devices

Michael Kubocz¹, Kai Jagielski¹, Pia Schneeweiss¹, Thomas Kraus¹, Pedro A.M.G.P. Bamberg², Jonas $\alpha\beta$ -TCR-expressing CD4⁺CD8⁺ double positive cells in the thymus. Although, the effect was varying over time points and sexes, this finding points towards a modulatory effect of ELF-MF on T cell maturation in the juvenile organism.

S06-2 [10:00] STUDENT PAPER

The effect of extremely low-frequency electromagnetic field exposure on circadian rhythms in constant conditions

Pippa Gleave^{1, 2}, Simon Bouffler¹, Daniel C

Anthony² & Kerry A. Broom¹

¹CRCE, Public Health England, Chilton, United Kingdom, OX11 0RQ

²Department of Pharmacology, University of Oxford, Oxford, United Kingdom, OX1 3QT

Keywords: Behavioural, Static, Work in Progress

Presented by: Pippa Gleave

Disruptions to circadian rhythms can have adverse health effects. The ubiquitous exposure of the public to extremely low-frequency electromagnetic fields (ELF-MF) has raised health concerns, and the longterm impact of this exposure is not fully understood. Previous studies have shown that ELF-MF modulates the expression of core clock genes in vitro and in vivo. Using male C57BL/6J mice, we investigated the effect of exposure to 50 Hz 573 uT fields in constant conditions on the circadian expression of core clock genes and on behaviour. ELF-MF exposure had no impact on the circadian expression of core clock genes or on the behaviour of the mice in the exposure cages.

S06-3 [10:15]

Browning of white adipose tissue after repeated low power RF exposure

Rene De Seze^{1, 2}, Amandine Pelletier² & Thi-Cuc Mai^{1, 2}

¹TEAM/PERITOX UMR I-01, INERIS, Verneuil en

Klussmann² & Alexander Schiebahn²

¹*Research Center for Bioelectromagnetic Interaction (femu), Uniklinik RWTH Aachen University, Aachen, Germany, 52074*

²Welding and Joining Institute (ISF), RWTH Aachen University, Aachen, Germany, 52062 Keywords: Occupational, Pulsed, Work in Progress Presented by: Michael Kubocz

Resistance spot welding (RSW) is a welding method to join metal parts in contact by heating them with a high current for a short duration (seconds or less), which is typically accompanied by intense and pulsating magnetic fields (MF) generated around the equipment. Operators of RSW devices are inevitably exposed to these MF in which the legally permissible health protection limits (see European Directive 2013/35/EU) are often exceeded. This work presents the first results of an ongoing project to develop a non-commercial webbased tool to assess occupational exposure to MF in the vicinity of RSW devices.

S05-4 [10:30] STUDENT PAPER

Electrical conductivity of the human leg in the frequency range from 5 kHz to 1 MHz

Otto Kangasmaa¹ & Ilkka Laakso^{1, 2}

¹Department of Electrical Engineering and Automation, Aalto University, Espoo, Finland

²Aalto Neuroimaging, Aalto University, Espoo, Finland

Keywords: Dosimetry (measurements), ELF/LF, Work in Progress Presented by: Otto Kangasmaa

Little data exists on the conductivity values of human tissues in vivo. The purpose of this work is to estimate the conductivity values in the intact human body at frequencies from 5 kHz to 1 MHz. The electrical impedance of ten subjects' legs was measured in the longitudinal and transverse directions with different electrode configurations. T1-and T2-weighted MR-images were obtained after the impedance measurements to create anatomically realistic models of the subjects' legs. Finally, the MRI-based models and measured impedance data from each test subject were used to determine the tissue conductivity by solving an inverse problem. New data on human tissue conductivity will be useful for dosimetry modelling

Halatte, France, 60550

²PERITOX UMR I-01, UPJV - Université Picardie Jules Verne, AMIENS, France, 80000 Keywords: In vivo, RF/Microwaves, Completed (unpublished) Presented by: Rene De Seze

After a repeated exposure to low power radiofrequency electromagnetic fields (RF), mice thermoregulatory changes and rats showed mimicking reactions to cold. Body temperature patterns in mice. measured by telemetry transmitters, changed synchronously with the RF exposure periods after 3 days. The shown episodes of quick temperature increase lead us to consider brown adipose tissue as an effector, but inguinal white adipose tissue was also analyzed for comparison. Strikingly, like responses to cold stimuli, both exposed rats and mice showed changes in the morphology of white and brown adipocytes. Exposure also led to a larger plasma concentration of non-esterified fatty acids (NEFA), a marker of lipolysis in non-shivering thermogenesis.

S06-4 [10:30]

Low-level radiofrequency exposure to 900 MHz induces vasoconstriction in rats

Amandine Pelletier¹, Thi-Cuc Mai^{1, 2}, Anne Braun^{1,}

², Véronique Bach¹ & Rene De Seze^{1, 2}

¹Peritox Laboratory, UMR-I 01 INERIS, Picardie Jules Verne University, AMIENS, France, 80025

²Experimental Toxicology Unit , National Institute of Industrial Environment and Risks (INERIS), VERNEUIL-EN-HALATTE, France, 60670 Keywords: In vivo, RF/Microwaves, Completed (unpublished) Presented by: Amandine Pelletier

Recent studies have revealed that rodents' physiological responses to low intensity radiofrequency electromagnetic fields (RF) were similar to thermoregulatory responses to cold conditions. We investigated the effects of 900 MHz RF at a low level (0.35 W.kg⁻¹) on tail skin temperature (T_{tail}) in rats at ambient temperature (Ta) between 24 and 34°C. We showed that rats exposed to RF had lower T_{tail} than control rats at Ta between 27 and 31 °C. This difference in T_{tail} was suppressed after the injection of a vasodilator, confirming the vasoconstriction in exposed rats.

S05-5 [10:45]

Estimation of exposure levels from crowdsourcing-based smartphone measurements

Sascha Schiessl¹, Thomas Kopacz¹, Anna-Malin Schiffarth¹ & Dirk Heberling^{1, 2}

¹Institute of High Frequency Technology, RWTH Aachen University, Aachen, Germany

² Fraunhofer Institute for High Frequency Physics and Radar Techniques, Wachtberg, Germany Keywords: Dosimetry (measurements), RF/Microwaves, Work in Progress Presented by: Sascha Schiessl

A crowdsourcing-based approach relying on signal strength measurements from common smartphones could potentially be used to monitor EMF exposure in the downlink of mobile radio. In this paper, for the first time, field strength values are derived from the signal strength measurements of smartphones. All the radio cells in the LTE network of a German network operator that can be detected in the area under investigation are considered. At 106 measurement points, the maximum total exposure from the LTE network is determined from smartphone measurements and compared with results of a field strength meter. In addition, signal strength measurements of neighboring cells are included to improve the coverage of all radio cells and frequency bands.

Moreover, like a response to cold stimuli, RF exposure led to a higher plasma concentration of factors involved in response to cold: noradrenaline and fatty acids.

S06-5 [10:45]

Superficial damage to skin from 8.2 and 95 GHz microwave exposures in swine

William Voorhees¹, James E Parker³, Christine Kowalczewski², Gordon Kennedy⁴, Jason Payne¹, Andrew Kowalczewski², Anthony Durkin⁴, Robert

Christy² & Jeffrey Whitmore¹

¹Radio Frequency Bioeffects Branch, Air Force Research Laboratory, JBSA Fort Sam Houston, San Antonio, Texas, USA, 78234

²US Army Institute of Surgical Research, JBSA Fort Sam Houston, San Antonio, Texas, USA, 78234

³General Dynamics Information Technology, JBSA Fort Sam Houston, San Antonio, Texas, USA, 78234

⁴Beckman Laser Institute & Medical Clinic, University of Irvine, CA, USA, 92612 **Keywords: In vivo, RF/Microwaves, Completed** (unpublished) Presented by: William Voorhees

The 711th Human Performance Wing, Radio Frequency Bioeffects Branch (711 HPW/RHDR) is undertaking a multi-disciplinary research effort to improve estimates of damage thresholds across the Radio Frequency (RF) spectrum. We have chosen to start with the region of the RF spectrum simplest to assess for damage, the upper microwave band (greater than 5 GHz), because energy is absorbed superficially; and thus, typically damage would be limited to the skin (Ziskin et al., 2018). This presentation details experiments that investigate skin burn thresholds for 8.2 GHz and 95 GHz exposures in the Yorkshire pig.

Coffee Break Tuesday September 28, 2021 • 11:00 - 11:30

Session: P2 Plenary 2 - Exploring the potentials of EM waves from body-scale to nanocommunications for healthcare applications Tuesday September 28, 2021 • 11:30 - 12:30 Einstein Chairs: Maxim Zhadobov & Denys Nikolayev

P2-1 [11:30]

Exploring the potentials of EM waves from body-scale to nano-communications for healthcare applications

Akram Alomainy¹

¹Department of EECS, Queen Mary University of London, London, UK, E1 4NS

Biographical sketch

Akram Alomainy received the M.Eng. degree in communication engineering and the Ph.D. degree in electrical and electronic engineering (specialized in antennas and radio propagation) from Queen Mary University of London (QMUL), U.K., in July 2003 and July 2007, respectively. He joined the School of Electronic Engineering and Computer Science, QMUL, in 2007, where he is a Reader in Antennas & Applied EM. His current research interests include small and compact antennas for wireless body area networks, radio propagation characterisation and modelling, antenna interactions with human body, computational electromagnetic, advanced antenna enhancement techniques for mobile and personal wireless

communications, nano-scale networks and communications, THz material characterisation and communication links and advanced algorithm for smart and intelligent antenna and cognitive radio system. He has authored and co-authored four books, 6 book chapters and more than 350 technical papers (8200+ citations and H-index 41) in leading journals and peer-reviewed conferences. Dr Alomainy won the Isambard Brunel Kingdom Award, in 2011, for being an outstanding young science and engineering communicator. He was selected to deliver a TEDx talk about the science of electromagnetic and also participated in many public engagement initiatives and festivals. He is an elected member of UK URSI (International Union of Radio Science) panel to represent the UK interests of URSI Commission B (1 Sept 2014 until 31 Aug 2021).

Abstract

With the advent of commercial products, such as Apple iWatch and Samsung Galaxy Gear, body-centric communication has increasingly garnered the public attention and smoothly translated state-of-the-art research work into reality. However, challenges still remains and these are often fundamental physical hurdles that need to be further explored and investigated to come up with efficient and scalable solutions applicable to many fields and areas. This becomes an important research area when you look at the scale or rather the multiple scales it needs to work at from body-size or larger networks to the nano-scale where there have been lots of interest recently on how to get nano-devices inside tissues and even inside intelligent materials around us. The lecture will present recent development in the area of antennas, RF devices and electromagnetic solutions for applications such as health care and biomedical engineering. It will look at the challenges from theoretical, numerical and experimental prospective to ensure that proposed concepts and outcomes are of benefit not only to those domains but other beyond such as agricultural technology and smart home and cities.

Session: CA Chiabrera Award Tuesday September 28, 2021 • 12:30 - 13:30 Einstein Chair: Niels Kuster

CA-1 [12:30]

Understanding electroporation using model systems

Lea Rems¹

¹University of Ljubljana, Ljubljana, Slovenia

Biographical sketch

Lea Rems is an assistant professor at the University of Ljubljana in Slovenia. Her research is focused on understanding basic biophysical mechanisms of electroporation with the aim of creating theoretical models that will help design new and better electroporation-based technologies and treatments. As an essential prerequisite for this aim she recognized the bridging between electroporation models on different scales, including molecular dynamics simulations of cell membrane components, models representing entire cells, and tissue models. She finished her PhD in 2016 at the University of Ljubljana, Faculty of Electrical Engineering, supervised by Damijan Miklavčič and Mounir Tarek. Afterwards, she became a postdoc in the group of Pouyan Boukany at the Delft University of

Technology in the Netherlands. In 2018 she continued her postdoctoral training in the groups of Lucie Delemotte and Ilaria Testa at KTH Royal Institute of Technology in Sweden. In 2021 she returned to the University of Ljubljana as a Marie Skłodowska-Curie Fellow.

List of selected publications:

- 1. Rems L, Kasimova MA, Testa I, Delemotte L: Pulsed Electric Fields Can Create Pores in the Voltage Sensors of Voltage-Gated Ion Channels. Biophys. J. 2020, 119: 90-205. doi: 10.1016/j.bpj.2020.05.030
- Kotnik T, Rems L, Tarek M, Miklavčič D: Membrane electroporation and electropermeabilization: Mechanisms and models. Annu Rev Biophys 2019, 48: 63-91. doi: 10.1146/annurev-biophys-052118-115451
- Perrier DL, Rems L, Boukany PE: Lipid vesicles in pulsed electric fields: Fundamental principles of the membrane response and its biomedical applications. Adv Colloid Interface Sci. 2017, 249:248-271. doi: 10.1016/j.cis.2017.04.016.
- 4. Rems L, Viano M, Kasimova MA, Miklavčič D, Tarek M: The contribution of lipid peroxidation to membrane permeability in electropermeabilization: A molecular dynamics study. Bioelectrochemistry 2019, 125:46-57. doi: 10.1016/j.bioelechem.2018.07.018
- 5. Rems L, Tarek M, Casciola M, Miklavčič D: Properties of lipid electropores II: Comparison of continuumlevel modeling of pore conductance to molecular dynamics simulations. Bioelectrochemistry 2016, 112:112–124. doi: 10.1016/j.bioelechem.2016.03.005

Abstract

Exposure of cells to intense electric pulses can trasiently disrupt the integrity of the plasma membrane via the phenomenon of electroporation. Despite being used in many applications in medicine and biotechnology, the molecular mechanisms underlying electroporation continue to be an exciting research puzzle, largely owing to the complexity of the molecular organization of the cell membrane. This lecture will summarize our understanding of electroporation that has been built based on bottom-up approaches using experimental and computational model systems.

Lunch Tuesday September 28, 2021 • 13:30 -15:00 Session: M2 BEMS ABM Tuesday September 28, 2021 • 13:30 -15:00 Einstein

Session: W2 Workshop 2 - Effects of low-intensity RF on thermal regulation Tuesday September 28, 2021 • 15:00 - 16:30 Einstein Chairs: Rene De Seze & György Thuroczy

W2-1 [15:00]

Workshop Introduction

Rene De Seze¹

¹TEAM/PERITOX UMR I-01, INERIS, Verneuil en halatte, France, 60550

Presently, the dominant paradigm is that radiofrequency waves with energy levels far under the thermal noise cannot produce biological or physiological effects. Although it is known that the signal/noise ratio can be used to detect repeated signals that would else not be perceived, like for example in magnetic resonance imaging, the same can happen for an efficient action of a signal on biological systems, provided there is a receptor mechanism that can be stimulated at such low levels. There is from the literature more and more evidence of such effects at low RF intensity on the thermal system, that all converge to show "responses to cold". Sharing those studies with other researchers and confronting mechanisms with eminent biophysicists could help further progress in their understanding and in future experiments. At this stage, humility has to predominate, and confrontation of experimental results with different researchers will help check their level of proof, comfort or decrease the confidence level, or help design more probing studies, and elaborate tracks for understanding of involved mechanisms.

W2-2 [15:05]

Rats exposed to chronic low-level 900 MHz radiofrequency feel cold

Amandine Pelletier¹

¹Peritox Laboratory, UMR-I 01 INERIS, Picardie Jules Verne University, AMIENS, France, 80025

In our studies, we showed that rats exposed to radiofrequency at a low level (5 weeks long, 900 MHz, 1 V/m, 10 mW/kg) are cold: they maintained vasoconstriction, they ate more compare to controls and they chose higher ambient temperatures compare to control animals. Sleep was modified when the animals could not move to find a more favourable environment for RF exposure or ambient temperature. All these studies showed that thermoregulation was modified with a possible origin of thermal peripheral sensitivity.

W2-3 [15:20]

Effects of low-level RF exposures on the thermoregulatory system

Rene De Seze¹

¹TEAM/PERITOX UMR I-01, INERIS, Verneuil en halatte, France, 60550

Only acute effects of RF fields have been confirmed to represent a health hazard and they are attributed to non-specific heating. The dominant paradigm is then that radiofrequency waves with energy levels under

thermal noise cannot produce biological or physiological effects. Although the mechanism has not been discovered, some studies show a paradoxical reaction to repeated RF exposures at low intensity, such as peripheral temperature decrease, or internal temperature increase which cannot be produced by the low field level. These effects represent reactions to cold, and first insights in their molecular targets can be addressed through exploration of thermal receptors. These effects and their possible mechanisms will be discussed.

W2-4 [15:40]

Which effects of low-level RF exposures on the thermoregulatory system?

Kenneth Foster¹

¹Department of Bioengineering, University of Pennsylvania, Philadelphia, PA, USA, 19104

This Workshop considers effects of low-level RF exposures on the thermoregulatory system. In principle, given the high temperature sensitivity of biological systems including thermal receptors in the human body, modest heating of tissue from an external source can elicit a range of subtle physiological effects in the body. Determining thresholds for such effects raises the usual "signal to noise" problems in measuring small effects. The physiological significance of such effects may be difficult to establish in the face of normal variability in body temperature. The Workshop will discuss "paradoxical reactions to repeated RF exposures at low intensity". The present speaker will take the role of an "opposing expert" that is traditionally used in thesis defenses by some Scandinavian universities, whose job is to challenge, in a friendly and constructive manner, the thesis being defended while encouraging further work on an important topic.

W2-5 [16:00]

Thermal biological effects in humans by low-level RF exposures?

Gunnhild Oftedal¹

¹Department of Electronic Systems, Norwegian University of Science and Technology, Trondheim, Norway

Introduction

While interaction mechanisms at low-level radio frequency (RF) electromagnetic fields (EMF) remain to be understood, some biological effects have been observed in human experimental studies. Changes in the EEG has been observed in a number of studies, for example with increased EEG power in the spindle frequency range after mobile phone handset related exposures (Huber et al., 2002; Loughran et al., 2005; Schmid et al., 2012). Authors of EEG studies perform under sleep with focus on sleep stages (Danker-Hophe et al., 2016) or under awake conditions (Marino et al., 2017; Loughran et al., 2019), have suggested that thermal mechanisms may be involved despite of the low exposure levels, e.g. by trigging neurones located close to the surface (Marino et al., 2017). While such findings are not sufficient to confirm mechanisms behind observed biological changes, they motivate exploring temperature changes in published human experimental studies with RF EMF exposure to low levels, to see whether the results are consistent with the suggested mechanisms. Despite of somewhat different thermal regulation in humans and animals, also of interest are results from animal studies that will presented at this workshop (Pelletier et al., 2013, 2014), which may indicate that the thermal sensitivity of the skin surface are of importance even at low exposure levels.

Coffee Break Tuesday September 28, 2021 • 16:30 - 17:00

Session: S07 Mechanistic / Theoretical Tuesday September 28, 2021 • 17:00 -17:45 Einstein Chairs: Micaela Liberti & Florence Poulletier De Gannes

S07-1 [17:00] STUDENT PAPER

Monocytic THP1 cells and PBMC show field strength dependent anti-oxidative responses to pulsed EMF

Silvia Groiss¹, Roland Lammegger² & Dagmar Brislinger¹

¹Gottfried Schatz Research Center, Medical University of Graz, Graz, Austria, 8010 ²Institute of Experimental Physics, Graz University

of Technology, Graz, Austria, 8010 Keywords: Mechanistic/Theoretical, ELF/LF, Work in Progress

Presented by: Silvia Groiss

Increasing exposure to electromagnetic fields (EMF) fosters health concerns primarily for medically ill patients. We investigated a potential susceptibility of the human monocytic cell line THP-1 derived from a leukemia patient and freshly isolated PBMC to EMF based on the exposure level. Stimulated THP1 cells showed an increased generation of ROS levels after 1h of EMF exposure, while levels in PBMC seemed unaffected. NAD(P)H levels declined slower after exposure to weak EMF in THP1 but not PBMC. We found several antioxidant enzymes to be upregulated after EMF exposure in both THP1 and PBMC including some involved in lipid metabolism. Together, these results suggest a diverging effect of EMF on monocytic cells dependent on field strength.

S07-2 [17:15]

Investigational current source and personalized *In-Silico* modelling for temporal interference brain stimulation research

Antonino Mario Cassara¹, Esra Neufeld¹, Myles Capstick¹, Nir Grossman², Sabine Regel³ & Niels Kuster^{1, 4}

¹Foundation for Research on Information

Session: S08 Human Studies Tuesday September 28, 2021 • 17:00 -17:45 Maxwell Chairs: Gunnhild Oftedal & Maryse Ledent

S08-1 [17:00]

CohoRte: post-professional follow-up of employees exposed to the 50 Hz magnetic field. Protocol and results for year 0

Martine Souques¹, Anne Duburcq², Isabelle

Bureau², Laurène Courouve², Carole Babin³,

Isabelle Magne¹ & Pierre-André Cabanes¹

¹Service des Etudes Médicales, EDF, Paris, France, 75017

²Epidemiology, Cemka-Eval, Bourg La Reine, France, 92340

³Service de médecine et santé au travail, RTE, Lyon, France, 69003

Keywords: Occupational, ELF/LF, Work in Progress

Presented by: Martine Souques

The objective of this study is to follow up the health status of workers retired from RTE who were occupationally exposed to 50-Hz magnetic fields by tracking mortality and morbidity through the French National Health Insurance Data. The cohort is made up of all workers whose retirement date is between January 1, 1995 and December 31, 2020s: a first subjects retired between 1995 and 2015, a second stage, with those who left between 2016 and 2020, will be included in 2021. 1848 subjects was selected in the first stage, of whom 1782 men were potentially eligible but only those with a complete career history were included in the study: 1479 subjects. The 2016 mortality and morbidity results are presented for the first part of the cohort.

S08-2 [17:15]

Do methodological limitations explain findings of experimental studies on symptoms in individuals with idiopathic environmental intolerance attributed to electromagnetic fields (IEI-EMF)? – A systematic review

Kristina Schmiedchen¹, Sarah Driessen¹ & Gunnhild Oftedal²

Technologies in Society (IT'IS), Zurich, Switzerland, 8003

²Department of Brain Sciences, Imperial College London, London, UK

³TI Solutions AG, Zurich, Switzerland

⁴Department of Information Technology and Electrical Engineering, Swiss Federal Institute of Technology (ETHZ), Zurich, Switzerland Keywords: Human, ELF/LF, Work in Progress Presented by: Antonino Mario Cassara

Here, we report the development of a novel investigational device for temporal interference stimulation (TIS) with four (8) fully differential current sources that enable flexible delivery of customizable current waveforms. We also report on the development of a computational framework that enables personalized modeling of TIS to facilitate and guide experiments both in humans and animals, while outlining the challenges for realistic modelling of TIS, identifying the TI dose, and estimating the associated uncertainty. Finally, we propose modeling requirements identified in the context of ongoing TIS-fMRI studies in human volunteers.

S07-3 [17:30]

Modeling dielectric response of biological structures at cellular level

Annalisa De Angelis¹, Laura Caramazza^{1, 2}, Franck Andre³, Lluis M. Mir³, Francesca Apollonio^{1, 2} & Micaela Liberti^{1, 2}

¹Center for Life Nano- & Neuro-Science, Fondazione Istituto Italiano di Tecnologia (IIT), Rome, Italy, 00161

²DIET@Sapienza University of Rome, Sapienza University of Rome, Rome, Italy, 00184

³CNRS, Univ. Paris-Sud, Université Paris-Saclay, Gustave Roussy, Villejuif, Paris, France Keywords: Mechanistic/Theoretical, RF/Microwaves, Work in Progress Presented by: Micaela Liberti

In this work preliminary results of the numerical study performed on dielectric response of biological structures at cellular level are provided. The aim is to demonstrate the ability of these microdosimetric models to show a spectrum of capacitive and conductive contrast in frequency domain quantitatively in line with published experimental ¹*Research Center for Bioelectromagnetic Interaction, RWTH Aachen University, Aachen, Germany*

²Department of Electronic Systems, Norwegian University of Science and Technology , Trondheim, Norway

Keywords: Human, RF/Microwaves, Completed (published)

Presented by: Gunnhild Oftedal

In a systematic review we assessed whether methodological limitations explain why experimental studies have not supported claims that symptoms experienced among individuals with IEI-EMF are caused exposure to We bv EMF. rated methodological limitations in 28 studies by using a customized tool. Our analyses did not explain why some studies reported an effect of exposure, while others did not. However, the overall evidence points towards no relation between the exposures and the symptoms. Therefore, further research should also explore alternative explanations of the symptoms. If additional provocation studies are conducted, these should be high-quality studies using novel approaches and preferably analyses at individual level.

S08-3 [17:30]

Impact of extremely low frequency magnetic fields on the human vestibulo-ocular reflex: a pilot study

Nicolas Bouisset^{1, 2}, Jessica Peng³, Andres Carvallo Pecci⁴, François Deschamps⁵, Martine Souques⁶, Isabelle Magne⁶, Pierre-André Cabanes⁶, Michel Plante⁷, Genevieve Ostiguy⁷ & Alexandre Legros^{1, 2, 3, 4, 8}

¹Human Threshold Research Group, Lawson Health Research Institute, London, On, Canada ²Department of Kinesiology, Western University, London, On, Canada

³Department of Medical Biophysics, Western University, London, On, Canada

⁴EuroMov Digital Health in Motion, Univ Montpellier, IMT Mines, Montpellier, France

⁵RTE, Cœur Défense, Département Concertation et Environnement, Paris-La Défense, France

⁶Service des Études médicales, EDF, Levallois-Perret Cedex, France

⁷Hydro-Québec , Montréal, Québec, Canada

⁸Department of Medical Imaging , Western University, London, On, Canada **Keywords: Human, ELF/LF, Work in Progress Presented by: Nicolas Bouisset**

Extremely low-frequency magnetic fields (ELF-MF) induce electric fields (E-Fields) and currents within the human body. These E-Fields can modulate neurophysiology. The vestibular system is sensitive to small E-Fields and could be impacted by ELF-MF. However, although there is evidence showing that direct and alternating E-Fields modulate the vestibular system, it is still unclear if and how it is equally impacted by ELF-MF. Since the vestibular system is linked to gaze stabilization, we chose to investigate the impact of vestibular specific ELF-MF stimulations at powerline frequencies and below on eye movements. ELF-MF results were compared with those obtained with electrical currents at the same frequencies.

Session: T1 Tutorial 1 - Endogenous bioelectric networks underlie embryogenesis, regeneration and cancer: from basic mechanisms to electroceuticals Tuesday September 28, 2021 • 17:45 - 18:45 Einstein Chairs: Richard Nuccitelli & Micaela Liberti

T1-1 [17:45]

Endogenous bioelectric networks underlie embryogenesis, regeneration and cancer: from basic mechanisms to electroceuticals

Michael Levin¹

¹Allen Discovery Center, Tufts University, Medford, MA, USA, 02155

Biographical sketch

Michael Levin's original training was in computer science. He then received a PhD in Genetics from Harvard Medical School and started his independent lab in 2000 at the Forsyth Institute in Boston. In 2009 he moved his group to Tufts University, where he is currently Distinguished Professor and Vannevar Bush chair. He directs the Allen Discovery Center (allencenter.tufts.edu), where his group works at the intersection of developmental biology, computer science, and biophysics. The Levin lab works to understand how cellular collectives use endogenous bioelectric signals to form computational networks that control growth and form. Developing molecular tools for reading and writing the endogenous bioelectric pattern

memories in living tissue, they develop applications in the repair of birth defects, induction of organ regeneration, and tumor normalization, as well as bioengineer synthetic living organisms to understand the morphogenetic code. All of his work can be found at http://www.drmichaellevin.org and on Twitter at @drmichaellevin.

Abstract

I will give a presentation on the targeting of endogenous bioelectric networks for the control of growth and form during embryogenesis, regeneration, and cancer. I will talk about new tools and computational modeling platforms for the targeting of bioelectrically-mediated morphogenetic controls for the purpose of regenerative medicine.

Cells must communicate in order to form complex structures during embryogenesis, repair them during adult regeneration, and resit cancer throughout the lifespan. As in the brain, the scaling of individual cell behaviors into organ-level anatomical decisions occur via computation in bioelectrical networks. Ion channels enable cells to drive specific resting potentials, which can be communicated to other cells via versatile electrical synapses known as gap junctions. We developed molecular-resolution tools to read and write the bioelectric information in somatic cellular networks by targeting these ion channels and gap junctions in vivo. In this talk, I will introduce the experimental and computational modeling tools now available for developmental bioelectricity and show applications in the control of complex organ growth, induction of limb regeneration, repair of birth defects of the brain, and cancer detection and normalization. Together with new information on the bioelectric code, simulation platforms are enabling the repurposing of known channel drugs as electroceuticals for many applications in regenerative medicine.

Session: S09 Dosimetry 4 (Computational) Wednesday September 29, 2021 • 08:00 -10:00 Einstein Chairs: Myles Capstick & Sam Aerts

S09-1 [08:00] STUDENT PAPER

Computational absorption and reflection studies of human cornea exposed to Millimetre Wave radiation

Negin Foroughimehr^{1, 2}, Zoltan Vilagosh^{1, 2}, Alireza Lajevardipour^{1, 2} & Andrew Wood^{1, 2}

¹Department of Health Sciences, Swinburne University of Technology, Melbourne, Australia, 3122

²Australian Centre for Electromagnetic Bioeffects Research, Melbourne, Australia, 3122 **Keywords: Dosimetry (computational), THz,**

Work in Progress Presented by: Negin Foroughimehr

The Millimetre Wave region of (MMW) Electromagnetic (EM) radiation is defined as radiation in the 30-300 GHz range. Given the increasing use of the MMW band in emerging telecommunication systems, it is crucial to determine the likelihood of adverse impacts on the human cornea. In this study, the propagation and interaction of MMWs with the cornea are simulated using a three-dimensional numerical software based on the Finite Difference Time Domain (FDTD) method. The temperature distribution in the cornea is measured and the results are compared with exposure limits set by international guidelines. This research develops a better understanding of the distribution of thermal changes, which could result in a refinement of MMW damage thresholds.

S09-2 [08:15] STUDENT PAPER

Radio-Frequency Absorption of a Western Honey Bee in the Near Field of an Antenna

David Toribio¹, Wout Joseph¹ & Arno Thielens¹ ¹Information Technology, Ghent University, Ghent, Belgium, 3018 Session: S10 Clinical / Diagnosis / Therapy Wednesday September 29, 2021 • 08:00 -10:00 Maxwell Chairs: Alexandre Legros & Maxim Zhadobov

S10-1 [08:00] STUDENT PAPER

A stream function-based coil design method capable of creating a contiguous coil for transcranial magnetic stimulation

Hikaru Yoshioka¹, Liu Shuang¹, Motofumi Fushimi³, Akihiro Kuwahata² & Masaki Sekino³

¹Department of Electrical Engineering and Information Systems, The University of Tokyo, Bunkyo,Tokyo, Japan, 113-8656

²Department of electrical engineering, Tohoku University, Sendai,Miyagi, Japan, 980-8579

³Department of Bioengineering, The University of Tokyo, Bunkyo,Tokyo, Japan, 113-8656

Keywords: Clinical (therapy), Pulsed, Completed (unpublished)

Presented by: Hikaru Yoshioka

An inverse problem-based approach is attracting attention as a new method of designing local for stimulation coils transcranial magnetic stimulation. However, the coil designed by this method is not realized as a single contiguous path, and it needs to be reconfigured during the actual manufacturing process, which complicates the process and could alter the coil's performance. In this paper, a new path-generation scheme was incorporated into this method to realize the design of practically manufacturable coils. In the result, it was found that the contiguous coil that has focality close to that of coils created by conventional method can be designed by the proposed scheme.

S10-2 [08:15] STUDENT PAPER

Can electrical impedance tomography be used for monitoring temperature and perfusion during hyperthermia treatment?

Redi Poni^{1, 2}, Esra Neufeld^{1, 2}, Myles Capstick², Stephan Bodis³, Theodoros Samaras⁴ & Niels

Keywords: Dosimetry (computational), RF/Microwaves, Completed (unpublished) Presented by: David Toribio

It has been shown that the wireless network evolution to smaller carrier wavelengths (from 2G to 5G) will increase radio-frequency electromagnetic field (RF-EMF) absorption in Western Honey Bees (Apis mellifera). It is unknown whether the radiation performance of antennas is stable when an insect appears in their vicinity. The numerical simulations in this research showed that in the near field, the bee's absorbed power can increase by a factor of 53, in the range of 6-240 GHz. Furthermore, it was found that the antennas' gain pattern depends on the separation distance between the bee and the antenna, with a stronger dependency for higher frequencies.

S09-3 [08:30] STUDENT PAPER

Radio-frequency exposure of adult yellow fever mosquito

Eline De Borre¹, Wout Joseph¹, Reza Aminzadeh¹, Pie Müller^{2, 3}, Matthieu Boone⁴, Iván Josipovic⁴,

Sina Hashemizadeh⁵, Niels Kuster⁵, Sven Kuehn⁵

& Arno Thielens¹

¹Department of Information Technology, Ghent University, Ghent, Belgium, 9000

²Swiss Tropical and Public Health Institute, Basel, Switzerland, 4002

³University of Basel, Basel, Switzerland, 4001

⁴Department of Physics and Astronomy, Ghent University, Ghent, Belgium, 9000

⁵*Foundation for Research on Information Technologies in Society (IT'IS), Zurich, Switzerland,* 8004

Keywords: Dosimetry (computational), RF/Microwaves, Completed (unpublished) Presented by: Eline De Borre Kuster^{1, 2}

¹Department of Information Technology and Electrical Engineering, Zurich, Switzerland

²Foundation for Research on Information Technologies in Society (IT'IS), Zurich, Switzerland

³Center of Radiation Oncology KSA-KSB, Kantonsspital Aarau, Aarau, Switzerland

⁴Department of Physics, Thessaloniki, Greece Keywords: Clinical (therapy), ELF/LF, Completed (unpublished) Presented by: Redi Poni

In this study we investigated the feasibility of electrical impedance tomography (EIT) as a noninvasive, low-cost, temperature- and perfusionmonitoring tool during loco-regional hyperthermia (HT) treatment. We propose a reconstruction method that exploits prior information from HT treatment planning and improves reconstruction across highly heterogeneous tissue environments. The method was tested on two HT treatment scenarios and high-resolution anatomical models with realistic heating pattern. The results show that EIT can be a promising tool for non-invasive 4D perfusion and temperature monitoring during HT treatment application.

S10-3 [08:30]

Localization of cardiac source based on lead field matrix and filtering

Yuki Nakano¹, Essam Rashed¹, Ilkka Laakso² & Akimasa Hirata¹

¹Electrical and Mechanical Engineering, Nagoya, Japan, 466-8555

²Electrical Engineering and Automation, Espoo, Finland, 02150

Keywords: Clinical (diagnostics), ELF/LF, Work in Progress

Presented by: Yuki Nakano

This study proposes a localization method for cardiac sources by combining an electrical analysis with a volume conductor model of the human body as a forward problem, and a sparse reconstruction method to solve inverse problem. Our formulation estimates not only the current source location but also the current direction. A time-series source localization with Kalman filtering indicated that source mislocalization could be compensated, suggesting the effectiveness of the source estimation using the current direction and location Power absorption of far field radio frequency (RF) electromagnetic fields (EMF) of the yellow fever mosquito (Aedes aegypti) was examined between 2 and 240 GHz using Finite Difference Time Domain (FDTD) simulations for six different adult mosquito models. The 3D models were created from micro-CT scans of real mosquitoes. The dielectric properties used in the simulation were measured from a mixture of homogenized A. aegypti. The absorption increases with increasing frequency between 2 and 90 GHz with a maximum between 90 and 240 GHz. For the same incident field strength, the power absorption by the mosquito is 16 times higher at 60 GHz than at 6 GHz.

S09-4 [08:45]

Continuous subthreshold IF exposure increases neural excitability

Antonio Sarolic^{1, 2}, Marin Peric¹ & Damir Sapunar²

¹Chair of Applied Electromagnetics, University of Split, FESB, Split, Croatia, HR-21000

²University of Split, School of Medicine, Split, Croatia, HR-21000

Keywords: Dosimetry (computational), IF, Work in Progress

Presented by: Antonio Sarolic

Human exposure guidelines in the low frequency range are based on the ability of internally induced electric fields to excite a silent nerve. We are now broadening the scope from analyzing just the silent resting state of the neuron, towards analyzing also the modulation of the ongoing innate neural activity by the external electric or magnetic field exposure. Our model shows that the subthreshold continuous IF exposure could modulate the innate neurological activity by facilitation, leading to the increase in neural excitability.

S09-5 [09:00]

Computational analysis of TMS coil orientation targeting lower limb

Kazuya Hayashi¹, Jose Gomez-Tames^{1, 2}, Toshiaki Wasaka¹ & Akimasa Hirata^{1, 2} simultaneously.

S10-4 [08:45]

Evaluating the complex dielectric parameters of water and gel using reflectance and transmission at 1.0 THz and 2.0 THz

Zoltan Vilagosh¹, Alireza Lajevardipour¹ & Andrew Wood¹

¹Department of Health Sciences and Biostatistics , Swinburne University of Technology , Hawthorn , Australia, 3122 **Keywords: Mechanistic/Theoretical, THz, Work in Progress**

Presented by: Zoltan Vilagosh

A new method is presented which extends the capabilities of attenuated total reflection (ATR) apparatus to a partial reflection/partial transmission mode, which also delivers the complex dielectric values of samples. The method is well suited to biological samples in the terahertz radiation frequency band range around 2.0 THz, with a diamond crystal ATR. The 2.0 THz range data is poorly represented in literature, since most THz data on biological tissues has 1.2 to 1.5 THz as the upper limit. A demonstration of the technique was performed using water and water based gel. Since many cancers have higher water content than normal tissue, this method promises to establish a new diagnostic modality.

S10-5 [09:00]

Multi-goal and time-multiplexed steering optimization for hyperthermia treatment

Redi Poni^{1, 2}, Esra Neufeld^{1, 2}, Myles Capstick², Stephan Bodis³ & Niels Kuster^{1, 2}

¹ Electrical and Mechanical Engineering, Nagoya Institute of Technology, Nagoya, Japan, 466-8555

²Center of Biomedical Physics and Information Technology, Nagoya Institute of Technology, Nagoya, Japan, 466-8555

Keywords: Dosimetry (computational), Pulsed, Work in Progress

Presented by: Kazuya Hayashi

Transcranial Magnetic Stimulation (TMS) is a noninvasive neuromodulation scheme that induces an electric current in the brain below the stimulating coil. Computational methods have been adopted for estimating the stimulation intensity level and location in particular for the hand motor area of the brain. However, no previous studies have investigated the TMS-induced electric field characteristics in the primary motor area of the lower limb. In this study, electromagnetic dosimetry based on experimental measurements of TMS was used to calculate the induced electric field. The experimental and computational results show the most effective TMS coil orientation for lower limb stimulation.

S09-6 [09:15]

Computed WEASAR and absorbed power density in the human eye in response to a smart contact lens

Afzaal Ahmad¹, Gunter Vermeeren¹, Luc Martens¹

& Wout Joseph¹

¹Department of information technology, Ghent University/imec, Ghent, Belgium, 9000 Keywords: Dosimetry (computational), RF/Microwaves, Completed (unpublished) Presented by: Afzaal Ahmad

This paper presents a numerical study of radiofrequency (RF) electromagnetic exposure of the eye tissue with and without a smart contact lens when exposed to a dipole at 2.4 GHz and 60 GHz. At 2.4 GHz, with an input power of 1W, whole-eye averaged specific absorption rate (WEASAR) increases from 18 W/kg to 43 W/kg when the distance between the eye tissue and dipole is varied from 5mm to 1mm respectively. For the 60 GHz model, peak spatial average absorbed power density is calculated for an input power of 10 dBm with peak value of 75 W/m²at d/ λ =0.1. The International Commission on Non-Ionizing Radiation ¹Department of Information Technology and Electrical Engineering, Zurich, Switzerland ²Foundation for Research on Information Technologies in Society (IT'IS), Zurich, Switzerland ³Center of Radiation Oncology KSA-KSB, Kantonsspital Aarau, Aarau, Switzerland **Keywords: Clinical (therapy), RF/Microwaves, Completed (unpublished) Presented by: Redi Poni**

Hotspots in healthy tissue are one of the main limiting factors in the application of therapeutic temperatures in deep hyperthermia (HT) cancer therapy. In this paper, we propose a rapid multi-goal time-multiplexed steerina (TMPS) specific absorption rate (SAR) optimization to minimize hotspots and while improving thermal dose homogeneity at the tumor. The method was compared to a multi-goal genetic algorithm (GA) SAR optimization in simulated treatments of bladder tumors and showed a reduction of peak temperatures in healthy tissue. The results suggest that this method can improve delivered thermal dose and, thanks to its speed, is suitable for online treatment adaptation.

S10-6 [09:15]

Comparison of induced fields in deep brain tissues by H-coil and its two separate coil sets

Mai Lu¹ & Shoogo Ueno²

¹*Key Lab. of Opt-Electronic Technology and Intelligent Control of Ministry of Education, Lanzhou Jiaotong University, Lanzhou, China, 730070*

²Department of Applied Quantum Physics, Graduate School of Engineering, Kyushu University, Fukuoka, Japan, 812-8581

Keywords: Clinical (therapy), Pulsed, Work in Progress Presented by: Mai Lu

The H-coil was considered high efficient for deep transcranial magnetic stimulation. The H-coil with complicated winding configuration was composed with two separate coil sets, i.e. blue-coil and yellowcoil as shown in Figure 1 in the abstract. This work presents the numerical study to compare the magnetic field and the induced electric field in realistic head model by H-coil and its two separate coil sets by employing the impedance method. It was found the yellow coil makes major contribution for the electric fields in deep brain regions, while the blue coil only stimulate the superficial cortical

Protection (ICNIRP) guidelines for general public and occupational exposure are met for distances \geq $\lambda/5$ and $\geq \lambda/10$ respectively.

S09-7 [09:30]

EXPOAUTO – An international research project on cumulative exposure of people of different ages to radiofrequency electromagnetic fields from new technologies in automotive services and connected objects

Gabriella Tognola¹, Barbara Masini¹, Marta Bonato¹, Emma Chiaramello¹, Sam Aerts², Wout Joseph², Joe Wiart³ & Paolo Ravazzani¹

¹*IEIIT - Institute of Electronics, Information Engineering and Telecommunications, CNR - Italian National Research Council, Sites of Milan and Bologna, Italy, 20133*

²Department of Information Technology, Ghent University/IMEC, Ghent, Belgium, 9052

³Chaire C2M, LTCI, TPT - Télécom Paris, Palaiseau, France, 91120 Keywords: Dosimetry (computational), RF/Microwaves, Work in Progress Presented by: Gabriella Tognola

The paper presents the objectives, the architecture, and the partnership of the international Project EXPOAUTO 'Cumulative real smart car exposure to radiofrequency electromagnetic fields in people of different ages from new technologies in automotive services and connected objects" financed by the French National Research Program for Environmental and Occupational Health of Anses (2020/2 RF/05).

S09-8 [09:45]

Evaluation of temperature rise for multiple antennas at different frequencies: A computational study

Norika Miura¹, Sachiko Kodera¹, Junji Higashiyama², Yasunori Suzuki² & Akimasa Hirata¹ ¹Dept. of Electrical and Mechanical Engineering, Nagoya Institute of Technology, Nagoya, Japan, 466-8555 ²Dept. of 66 Laboratorica, NTT DOCOMO, INC

²Dept. of 6G Laboratories, NTT DOCOMO, INC, Kanagawa, Japan, 239-8536 **Keywords: Dosimetry (computational), RF/Microwaves, Work in Progress** regions with improved focality.

S10-7 [09:30]

Initial assessment of a microwave imaging system for continuous monitoring of liver tumor ablation

Mengchu Wang^{1, 2}, Rosa Scapaticci¹, Marta Cavagnaro^{1, 2} & Lorenzo Crocco¹

¹Institute for the Electromagnetic Sensing of the Environment, National Research Council of Italy, Napoli, Italy, 80124

²Department of Information Engineering, Electronics and Telecommunications, Sapienza University of Rome, Rome, Italy, 00184 Keywords: Clinical (diagnostics), RF/Microwaves, Completed (unpublished) Presented by: Mengchu Wang

In this work, the in-silico assessment of a microwave imaging device specifically designed for liver ablation monitoring is presented. The outcomes of this study show the designed device is capable of providing 3D images of the ablated region, paving the way for the next stage in which the device will be implemented and experimentally assessed in the same conditions as those simulated in this study.

Presented by: Norika Miura

Temperature rise in human body is a dominant effect for exposure at frequencies higher than 100 kHz. The 5th generation wireless communication systems may simultaneously use the frequency ranges above and below 6 GHz. This study evaluates the effect of superposition of SAR, APD, and resultant temperature rise for simultaneous exposures at different frequencies for the first time. The results suggested that the effect of superposition would be marginal at least for the cases considered here.

Coffee Break Wednesday September 29, 2021 • 10:00 - 10:30

Session: S11 Dosimetry 5 Wednesday September 29, 2021 • 10:30 -12:00 Einstein Chairs: Emmanuelle Conil & Jürg Fröhlich

S11-1 [10:30]

Fast antenna characterization using a phaseless-based source-reconstruction algorithm

Kristian Cujia¹, Arya Fallahi^{1, 2} & Niels Kuster^{1, 2} ¹*ITIS Foundation, Zurich, Switzerland, 8004* ²*Information Technology and Electrical Engineering, ETH Zurich, Zurich, Switzerland, 8092 Keywords: Dosimetry (measurements), RF/Microwaves, Work in Progress*

Presented by: Niels Kuster

Exposure assessment (EA) of wireless devices requires power density (PD) measurements over the near-field to far-field regions. PD evaluation demands knowledge about the field phasors, thus through brute-force measurements EA field becomes a burdensome process. Here, we present a strategy based on a multiple multipole expansion for accurate PD evaluation in all field regions out of sparse phaseless measurements. We construct an equivalent source in terms of pairs of elementary electric or magnetic dipoles and evaluate their amplitudes such that the measured fields are reproduced with minimal error. This enables accurate field reconstruction from the (reactive) near field to the far field regions within an uncertainty budget (0.6 dB).

S11-2 [10:45]

Frequency dependence of peripheral nerve threshold for magnetic field exposure

Yosuke Suzuki¹, Yinliang Diao¹, Jose Gomez-

Tames¹ & Akimasa Hirata¹

¹*Electrical and Mechanical Engineering, Nagoya, Japan, 466-8555*

Keywords: Dosimetry (computational), IF, Work in Progress Presented by: Yosuke Suzuki

International guidelines/standards for human protection have set limits where electrostimulation is

Session: S12 Risk, Safety Standards and Policies Wednesday September 29, 2021 • 10:30 -12:00 Maxwell Chairs: Martin Röösli & John Bolte

S12-1 [10:30]

Evaluation of non-sinusoidal magnetic fields: Comparing the weighted peak method with a new method using the Spatially Extended Nonlinear Node electrostimulation model

Florian Soyka¹

¹Institute for Occupational Safety and Health, German Social Accident Insurance, Sankt Augustin, Germany, 53757 Keywords: Occupational, Pulsed, Completed (unpublished) Presented by: Florian Soyka

As stated by ICNIRP and IEEE the evaluation of non-sinusoidal magnetic fields is an important research topic. The weighted peak method (WPM) is often used for such evaluations. Here, a new method (called SENN EI) is proposed which provides an exposure index (EI) for the high action levels based on the Spatially Extended Nonlinear Node (SENN) electrostimulation model. The exposure indices of both methods are directly comparable. Since SENN EI uses detailed SENN model calculations, it can be seen as ground truth to which the WPM can be compared. Comparisons show that the WPM evaluations are conservative and do not underestimate the exposure with the tested waveforms.

S12-2 [10:45]

SAR origin and safety/reduction factors of radio frequency exposure limits

C. K. Chou¹

¹C-K. Chou Consulting, Dublin, CA, USA, 94568 Keywords: Standards, RF/Microwaves, Completed (unpublished) Presented by: C-K. Chou

This presentation reviews the origin of SAR (Specific Absorption Rate) and explains how exposure limits for the current two-tier exposure limits were derived. Based on expert judgement,

the primary effect for exposure up to 5-10 MHz. However, additional evaluation for limits is needed to clarify the experimental and computational uncertainty. This study evaluated the external magnetic field strength threshold for activation of peripheral nerve in conservative conditions. The results show that computed thresholds of external magnetic field are conservative concernina permissible values from the international guidelines/standards.

S11-3 [11:00]

Assessment of brief exposure to radiofrequency electromagnetic fields emitted from a smart meter operating at 920 MHz based on revised ICNIRP guideline

Takeo Shiina¹ & Kenichi Yamazaki¹

¹Central Research Institute of Electric Power Industry, Yokosuka, Japan, 240-0196 Keywords: Dosimetry (computational), RF/Microwaves, Work in Progress Presented by: Takeo Shiina

We assessed brief exposure to radiofrequency (RF) electromagnetic fields emitted from a smart meter based on the revised guideline published by the International Commission on Non-Ionizing Radiation Protection (ICNIRP). Although the low-power wireless communication device used for the smart meter inherently complies with exposure guidelines, the exposure assessment is useful to deepen our understanding of human safety. We calculated the SA values using anatomical human model in vicinity of a smart meter at 920 MHz. The spatially averaged SA in the head was calculated to be 29.9 mJ/kg for an input power of 20 mW. It was shown that RF fields around the smart meter were much lower than the basic restriction in the ICNIRP guideline.

S11-4 [11:15]

Modelling of daily radiofrequency electromagnetic field dose for a prospective adolescent cohort

Martin Röösli^{1, 2}, Jana Sönksen^{1, 2}, Claudia Schmutz^{1, 2}, Steven C. Shen^{3, 4}, Mireku MO^{3, 4}, Darren Addison⁶, Myron Maslanyj⁶, Mireille safety factors or reduction factors provide safety margins below established adverse health effects levels. These factors vary with basis of the protection threshold (cataracts or tissue heating), frequency range, body size, ground conditions, etc. Current IEEE standard and ICNIRP guidelines differ in interpretation of the safety factors or reduction factors for local exposures but do not differ for whole-body exposure.

S12-3 [11:00]

Review of health effects from WLAN radiation: quality matters

Stefan Dongus^{1, 2}, Hamed Jalilian³, David Schuermann⁴ & Martin Röösli^{1, 2}

¹Department of Epidemiology and Public Health, Swiss Tropical and Public Health Institute, Basel, Switzerland, 4002

²University of Basel, Basel, Switzerland, 4051

³Department of Occupational Health Engineering, Research Center for Environmental Pollutants, Faculty of Health, Qom University of Medical Sciences, Qom, Iran

⁴Department of Biomedicine, University of Basel, Basel, Switzerland, 4058

Keywords: Public Health Policy, RF/Microwaves, Review, Commentary, Recommendation, Evaluation Presented by: Stefan Dongus

This review study aimed at evaluating biological and health effects of realistic WiFi exposure. We systematically assessed epidemiological, human experimental, in vivo and in vitro studies that fulfilled basic quality criteria. More than 1000 articles published between 1997 and 2020 were identified by the literature search. Based on the 23 publications fulfilling the basic quality criteria, we found little evidence that WiFi exposure in the everyday environment is a health risk.

S12-4 [11:15]

Phosphene perception thresholds during transcranial alternating current stimulation (tACS) at extremely low frequencies in humans Andres Carvallo¹, Maorie Laporte¹, Nicolas

Bouisset^{2, 4}, François Deschamps⁶, Martine Souques⁷, Isabelle Magne⁷, Pierre-André Toledano^{3, 4, 5} & Marloes Eeftens^{1, 2}

¹Swiss Tropical and Public Health Institute, Basel, Switzerland

²University of Basel, Basel, Switzerland

³MRC Centre for Environment and Health, Imperial College, London, United Kingdom

⁴National Institute for Health Research, Health Protection Research Unit in Chemical and Radiation Threats and Hazar, London, United Kingdom

⁵Mohn Centre for Children's Health and Wellbeing, Imperial College, London, United Kingdom

⁶Centre for Radiation, Chemical, and Environmental Hazards, Public Health England, Oxon, United Kingdom

Keywords: Dosimetry (measurements), RF/Microwaves, Completed (unpublished) Presented by: Martin Röösli

In the framework of the prospective cohort study SCAMP (Study of Cognition, Adolescents and Mobile Phones), we aimed at describing radiofrequency electromagnetic field (RF-EMF) dose development over a 2-vear period. Mean daily whole body RF-EMF dose was 170 mJ/kg/day in a sample of 6,152 children aged 12.1 year. Two years later whole body RF-EMF dose was virtually the same (176 mJ/kg/day), whereas RF-EMF dose absorbed by the temporal lobe increased by 32% owned to increase in mobile phone call duration. Main dose contributors were calls on the 2G network. Dose estimated at baseline and follow-up for various organs showed correlations between 0.25 und 0.35 among the 3,241 children who completed both assessments.

S11-5 [11:30]

Transmit RF power calibration of the personal EM exposimeter DEVIN

Serge Bories¹, David Dassonville¹, Emmanuelle Conil², Joe Wiart³ & Isabelle Deltour⁴ ¹*CEA*,, Grenoble, France, 38054 ²*ANFR*, Paris, France ³*Telecom ParisTech*, Paris, France Cabanes⁷, Genevieve Ostiguy⁸, Michel Plante⁸ & Alexandre Legros^{1, 2, 3, 4, 5}

¹EuroMov Digital Health in Motion, Univ Montpellier, IMT Mines, Montpellier, France, 34090

²Human Threshold Research Group, Lawson Health Research Institute , London, Ontario, Canada, N6C2R5

³Department of Medical Biophysics, Western University, London, Ontario, Canada, N6C2R5

⁴Department of Kinesiology, Western University, London, Ontario, Canada, N6C2R5

⁵Department of Medical Imaging, Western University, London, Ontario, Canada, N6C2R5

⁶RTE, Departement Concertation et Environment, Paris-La Defence, France, 92060

⁷Service des Etudes Medicales, EDF, Levallois-Perret Cedex, France, 92300

⁸Hydro-Quebec, Montreal, Quebec, Canada, H2Z 1A4

Keywords: Public Health Policy, ELF/LF, Completed (unpublished) Presented by: Andres Carvallo

OBJECTIVE: Estimating phosphene thresholds at Extremely Low Frequencies (ELF). METHODS: Twenty participants completed the experimental study. Phosphene thresholds were calculated using logistic regressions on perception responses resulting from non-invasive transcranial Alternating Current Stimulation (tACS) between 0-2 mA delivered at 20-50-60-100 Hz. **RESULTS:** Thresholds were lower at 20 than 50 and 60 Hz. The 100 Hz did not reveal significant phosphene for the delivered perceptions currents. SIGNIFICANCE: These results further consolidate the literature regarding how locally induced electric fields impact specific cells of the central nervous system, and could contribute reducing uncertainties identified in international guidelines.

S12-5 [11:30]

Environmental protection: adapting the ICNIRP approach to frequencies above 6 GHz

Andrew Wood^{1, 3}, Zoltan Vilagosh^{1, 3}, Alireza

Lajevardipour^{1, 3} & Ken Karipidis²

¹Swinburne University of Technology, Hawthorn, Australia, Vic 3122

²Australian Radiation Protection and Nuclear Safety Agency, Yallambie, Australia, Vic 3085

⁴IARC, Lyon, France **Keywords: Dosimetry (measurements), RF/Microwaves, Work in Progress Presented by: Serge Bories**

The population EM exposure and its long-term evolution is strongly dependent of the wide diversity of usages, of telecom standards but also of the network infrastructure deployment choices. The miniature personal exposimeter DEVIN is attached to the user's smartphone to log both the effective transmitted RF power and to classify the user activities along the day. Details and limitations of the transmitted RF power calibration process are presented in this paper. WiFi bands and cellular bands have their specific calibration. The former relies on a priori knowledge of transmitted power, whereas the latter is calibrated with a base-station emulator which can control the RF power transmitted by the smartphone that carries the DEVIN.

³Australian Centre for Electromagnetic Bioeffects Research, Hawthorn, Australia, Vic 3122 **Keywords: Standards, RF/Microwaves, Work in Progress Presented by: Andrew Wood**

Basic restrictions above 6 GHz in the 2020 ICNIRP Guidelines assume that absorption is occurring in human skin or eye. When considering possible effects on environmental flora and fauna a different approach is needed to allow for different morphology electrical properties. and This presentation covers modelling and theoretic approaches we have made in providing advice to a local government authority and will outline further work we intend to do.

S11-6 [11:45]

Continuous subthreshold ELF exposure is able to modulate the physiological neural activity?

Antonio Sarolic^{1, 2}, Filip Repac¹ & Damir Sapunar²

¹Chair of Applied Electromagnetics, University of Split, FESB, Split, Croatia, HR-21000

²University of Split, School of Medicine, Split, Croatia, HR-21000

Keywords: Dosimetry (computational), ELF/LF, Completed (published) Presented by: Antonio Sarolic

Human exposure guidelines in the ELF frequency range are based on the ability of internally induced electric fields to excite a silent nerve and produce the adverse reaction. However, the nervous system is not silent, but an active network of afferent and efferent signals. Therefore, it is only logical to broaden the view from analyzing just the silent resting state of the neuron, towards analyzing also the modulation of the ongoing innate neural activity by the external electric or magnetic field exposure. Our model shows that the modulation of the innate neurological activity might occur even with continuous subthreshold power frequency exposure.

S12-6 [11:45]

The Precautionary Principle in the domain of extreme low frequency electromagnetic fields: a theoretical investigation

Els De Waegeneer¹ & Lutgart Braeckman¹

¹*Public Health, Ghent University, Ghent, Belgium,* 9000

Keywords: Public Health Policy, ELF/LF, Work in Progress

Presented by: Els De Waegeneer

The Precautionary Principle is often called upon when dealing with possible environmental hazards, despite being under a lot of criticism. Pros and cons of the application of the Precautionary Principle will be considered and discussed in the light of ELF-EMF. The theoretical investigation on this particular concept could clarify the possible gaps and shortcomings of the principle and its application. Furthermore, this study could offer alternative or supplementary concepts and applications of the precautionary principle in the domain of ELF-EMF.

Session: P3 Plenary 3 - A comparison between the recently released IEEE standard and ICNIRP radiofrequency guidelines: What are the differences, and do they make a difference? Wednesday September 29, 2021 • 12:00 - 13:00 Einstein Chairs: Martin Röösli & Myles Capstick

P3-1 [12:00]

New IEEE C95.1-2019 standard and ICNIRP 2020 guidelines

C. K. Chou¹

¹C-K. Chou Consulting, Dublin, CA, USA, 94568

Biographical sketch

Dr. C-K. Chou received his Ph.D. degree from the University of Washington, in 1975. From 1976 to 2013, he worked at the University of Washington, City of Hope National Medical Center, and Motorola. He is retired and currently an Independent Consultant on EMF safety issues. He continues to serve as Chairman of Technical Committee 95 of the IEEE International Committee on Electromagnetic Safety, responsible for exposure standards from 0 to 300 GHz (2006 to present). Dr. Chou received the d'Arsonval Medal from the Bioelectromagnetics Society in 2006 and received the IEEE Standards Association Lifetime Achievement Award in 2020.

Abstract

In the BioEM 2019 Workshop: "Differences of exposure limits between the new ICNIRP Guidelines and IEEE C95.1 Standard", we discussed various differences between the two exposure limits before they were published. Now that both IEEE and ICNIRP have published their standard and guidelines in 2019 and 2020, respectively. EMF exposure limits have been developed independently by the two international committees. Even based on the same literature and both protect against established or substantiated adverse health effects, there are still differences in exposure limits between the two groups. For high frequencies, most limits are the same. At lower frequencies, there are some discrepancies in exposure limits between ICNIRP 2010 low frequency guidelines and IEEE C95.1-2019. In future revisions, harmonization of exposure limits continually is the goal for a global standard.

P3-2 [12:30]

Difference of exposure restrictions between new IEEE C95.1 standard and ICNIRP guidelines

Akimasa Hirata¹

¹Department of Electrical and Mechanical Engineering, Nagoya Institute of Technology, Nagoya, Japan, 466-8555

Biographical sketch

Akimasa Hirata received the Ph.D. degree in communications engineering from Osaka University, Suita, Japan, in 2000. In 2001, he joined Osaka University as an Assistant Professor. In 2004, he moved to Nagoya Institute of Technology, where he is currently a full professor and a director of research center. His research interests include public health engineering (human protection from electromagnetic field and environmental heat), methods in neuroscience, and related computational techniques. He is a member of the main commission and a project group chair of International Commission on Non-Ionizing Radiation Protection (ICNIRP). He received several awards including IEEE EMC-S Technical Achievement Award (2015), and the Japan Academy Medal (2018). He is a Fellow of Institute of

Physics, IEEE and IEICE.

Abstract

The ICNIRP radiofrequency guidelines and IEEE C95.1 standard have been revised in 2020 and 2019, respectively. One of the primary differences between them is the difference of the permissible field strength (power density), which are named reference level or exposure reference level (ERL), respectively. Specifically, the permissible field strength in the MHz range and that for local exposure are different even based on the same basic restriction or dosimetric reference limit (DRL). In addition, the (exposure) reference levels are different for intense (brief) exposure and contact current. The differences of these limits are summarized to clarify the research need.

Lunch Wednesday September 29, 2021 • 13:00 - 14:30

Session: M3 EBEA GA Wednesday September 29, 2021 • 13:30 - 14:30 Einstein

Session: W3 Workshop 3 - Ultraweak and weak static, ELF, and RF field effects on biological systems Wednesday September 29, 2021 • 14:30 - 16:30 Einstein Chairs: Myrtill Simko & Rene De Seze

W3-1 [14:30]

Workshop Introduction

Frank Barnes¹ & Ben Greenebaum²

¹Electrical, Computer and Energy Engineering, Boulder, Colorado, USA, 80309

²Department of Physics, Kenosha, Wisconsin, USA, 53144

Experiments from many laboratories using magnetic field strengths well below the ambient Earth's field, including intensities very close to zero, have shown interesting and somewhat unexpected effects. Papers in this workshop present results on a sampling of biological systems of weak and ultra-weak static, alternating, and RF fields, Thepapers also explore some possible affected biological pathways or other explanations of how fields of this intensity are affecting the biological systems.

W3-2 [14:30] Young Scientist

Multiple pathways involve in bio-response to the hypomagnetic field

Ying Liu^{1, 2}, Wei-chuan Mo², Jing-peng Fu², Hai-tao Zhang², Zi-jian Zhang², Bing-jun Liu¹, Jie Ren¹ & Ronggiao He²

¹School of Life Sciences, Beijing University of Chinese Medicine, Beijing, China, Beijing 102488

²State Key Laboratory of Brain and Cognitive Science, Institute of Biophysics, CAS, Beijing, China, Beijing 100101

To reveal the role of geomagnetic field (GMF) and the mechanisms of biomagnetosensation, an extensive analysis of the effects of hypomagnetic field (HMF), a GMF elimination condition, have been conducted both in vivo and in vitro. The results indicate impairment of brain functions and general activities of mice, altered cell activities including proliferation and movement, repression of CuZn-SOD and mitochondrial activities, as well as actin assembly. These data indicate multiple pathways involved in the bio-responses to the HMF.

W3-3 [14:45] STUDENT PAPER

Weak magnetic fields: A quantum approach to controlling stem cells

Luke Kinsey¹, Alanna Van Huizen¹ & Wendy Beane¹

¹Department of Biological Sciences, Western Michigan University, Kalamazoo, MI, USA, 49009

Recent advances in quantum biology have highlighted potential advantages for quantum approaches as therapies. Our prior work identified weak magnetic fields (WMFs) as one such approach. Here we investigate the ability of WMFs to modulate stem cell activity during planarian regeneration. We exposed regenerates to different field strengths and analyzed reactive oxygen species (ROS) levels and Hsp70-mediated stem cell proliferation. We show WMFs can manipulate stem cells to either promote or inhibit new growth (dependent on field strength), consistent with theoretical models indicating WMFs alter radical formation through electron spin state changes. Our data suggest quantum approaches to controlling stem cells are an emerging research area.

W3-4 [15:00]

The impact of combined Static magnetic fields and RF fields on HT-1080 fibro sarcoma cells and role of Iron Sulphur complexes on ROS production

Hakki Gurhan¹ & Frank Barnes¹

¹Electrical, Computer and Energy Engineering, Boulder, Colorado, USA, 80309

This research advances the argument that Iron Sulphur proteins inside the electron transport chain of mitochondria are one of the important molecules interacting with externally applied Static and RF magnetic fields. A model was introduced based on radical pair mechanism and resonance effect of applied Radio Frequency (RF) Fields were investigated on cell growth, intracellular pH, membrane potential, hydrogen peroxide and mitochondrial calcium at frequencies between 1 MHz and 10 MHz in combination with SMFs.

W3-5 [15:15]

Extremely low-frequency electromagnetic field interactions with biological systems

Sahithi Kandala¹, Mark Hernandez², Ben Greenebaum³ & Frank Barnes¹

¹Electrical, Computer and Energy Engineering, University of Colorado, Boulder, Colorado, USA, 80309
 ²Civil, Environmental and Architectural Engineering, University of Colorado, Boulder, Colorado, USA, 80309
 ³Department of Physics, University of Wisconsin, Kenosha, wisconsin, USA, 53144

There have been numerous studies detailing the effects of low frequency fields with biological systems. Here, we explore the mechanism behind the interaction between biological systems and extremely kow frequency fields. The exploration is two fold, we look at how changes in both the cell type of the biological systems and how changes in the characteristics of the fields change this interaction. The theory of mechanism of response and interaction will also be presented with data that supports the hypothesis.

W3-6 [15:30]

A static magnetic field inhibits the migration and telomerase function of mouse breast cancer cells

Zhu Fan¹, Pingdong Hu^{2, 3}, Guomi Wang^{1, 3}, Ying Liu¹, Rongqiao He² & Tao Lu¹

¹School of Life Sciences, Beijing University of Chinese Medicine, Beijing, China, Beijing 100029

²State Key Laboratory of Brain and Cognitive Science, Institute of Biophysics, CAS, Beijing, China, Beijing 100101

³University of Chinese Academy of Sciences, Beijing, China, Beijing 100101

In this study, we evaluated the effects of moderate static magnetic field (SMF) (~150 mT) on 4T1 breast cancer cells. The results showed that SMF treatment accelerated cell proliferation but inhibited cell migration and telomerase function, which indicates that the telomerase network is responsive to SMF and may function as a target in magnetic therapy of cancers.

W3-7 [15:45]

Weak RF and magnetic fields as intercellular communication mechanism

Frank Barnes¹, Hakki Gurhan¹, Sahithi Kandala¹, Mark Hernandez² & Ben Greenebaum³ ¹Electrical, Computer and Energy Engineering, Boulder, Colorado, USA, 80309 ²Civil, Environmental and Architectural Engineering, Boulder, Colorado, USA, 80309 ³Department of Physics, Kenosha, Wisconsin, USA, 53144

We and others have shown that both weak radio frequency fields and magnetic fields can change the growth rates of fibrosarcoma and other cells. These fields can provide a rapid short-range communications system within and between cells that is not inhibited by membrane resistances. In this talk we will present a model showing the emission of weak magnetic fields resulting from nuclear spins and nerve cell pulses can affect chemical reaction rates and that signals as small as on nT have been shown to change cell growth rates.

W3-8 [16:00]

Effects of a weak static magnetic field on the production of reactive oxygen species by neutrophils. Comparison with the effects of combined static and ELF magnetic fields

Igor A. Shaev¹, Vadim V. Novikov¹ & Elena V. Yablokova¹

¹Institute of Cell Biophysics RAS, Federal Research Center, Pushchino, Russian Federation, 142290

We have shown that exposure of murine peritoneal neutrophils to magnetic shielding in hypomagnetic conditions (HMC) causes the decrease of intracellular ROS production recorded by change of fluorescence intensity of the products of 2,7-dichlorodihydrofluorescein and dihydrorhodamine 123. In these experiments, we found that the effect of the hypomagnetic field is apparent on neutrophils without their additional stimulation by the chemical activators of respiratory burst, and, consequently, the mechanism of such action can be not related to the impairment of the response of neutrophils to these stimuli.

Coffee Break Wednesday September 29, 2021 • 16:30 - 17:00

Session: DA d'Arsonval Award Wednesday September 29, 2021 • 17:00 - 18:00 Einstein Chair: Rene De Seze

DA-1 [17:00]

Answers and Questions: 40 Years in Bioelectromagnetics

Ben Greenebaum¹

¹Physics Department, University of Wisconsin-Parkside, Kenosha, WI, USA, 53141

This D'Arsonval Lecture presents an overview of attempts over my research career in collaboration with a variety of others to help answer the basic question of bioelectromagntics: What's going on here? It begins with early research exposing the sliime mold Physarum polycephalum to ELF fields and continues with a variety of types of cells and fields, mostly static and ELF, as well as to some attempts at basic theoretical explanations. As with all such attempts, each new piece of information raises more questions than it answers.

I am most appreciative to the Bioelectromagnetics Society for the 2020 D'Arsonval Award, which as someone trained in experimental physics I must share with all of the other scientists, students and technicians, mostly biologists and chemists, with whom I have collaborated over the years.

The work began in 1972 when three young assistant professors used a slime mold to see if electromagnetic fields would affect them. They did, though the effects were small and hard to tease out of the noise. The cell cycle was lengthened and there were changes in respiration. So, the next question was "how and why?" and that has led to a long and interesting research life. Further changes were seen using these and then other bacterial and eukaryotic cells in respiration, in ATP, in the protein replication chain, and so forth. Changes occurred even in cell extracts that lacked an intact plasma membrane. Nerve cells showed changes in leakage of neurotransmitters and in neurite outgrowth from excised ganglia. For each succeeding type of experiment, I sometimes had to devise new ways of applying the fields without upsetting the normal functioning of

the cells or subdividing the data to try to tease out another answer. In all of this work, an interdisciplinary group of collaborators was helpful in designing the experiments before we started, as well as thinking about the procedures, the data and the conclusions, covering gaps in my knowledge as I helped cover gaps in theirs. Based on some of the experiments with nerve cells, I also did some computer calculations, modeling the internal electric and magnetic fields and current densities in simplified representations of bone fractures and also of spinal cords in vertebrae. More recently, I have collaborated on some theoretical models of what fields might be doing at the cellular and molecular level, particularly with reference to the radical model. With each piece of research, I and my collaborators generally found a small piece of information about fields and biological systems; and each answer raised another set of questions, which is the way of science. Though bioelectromagnetic scientists have learned much and can say much at greater depth about what happens when an organism is exposed to a field, the fundamental question still remains: What exactly is going on here?

Session: S13 Electroporation 2 Thursday September 30, 2021 • 08:00 - 09:45 Einstein Chairs: Philippe Leveque & Lluis M. Mir

S13-1 [08:00]

Quantitative phase microscopy monitors sub-cellular dynamics in single cells exposed to nanosecond pulsed electric fields

Zachary Steelman¹, Bennett Ibey², Allen Kiester² & Joel Bixler²

¹National Research Council Research Associateship Program, Washington , DC, USA, 20001

²Air Force Research Laboratory, JBSA Fort Sam Houston, Texas, USA, 78234 Keywords: Electroporation, Pulsed, Completed (unpublished) Presented by: Zachary Steelman

Quantitative phase imaging (QPI) is a label-free imaging modality which uses the optical pathlength of a thin sample as a contrast mechanism. In this work, we introduce QPI as a useful tool for the study of nsPEF-induced biophysical change. Single cells exposed to a variable number of nsPEF pulses are monitored using QPI for changes in cytoskeletal organization and intracellular material distribution.

S13-2 [08:15]

Modelling transmembrane potential and mechanical stress in contactless cell permeabilization by time-varying magnetic fields

Emma Chiaramello¹, Serena Fiocchi¹, Marta Bonato¹, Silvia Gallucci^{1, 2}, Martina Benini^{1, 2}, Gabriella Tognola¹, Paolo Ravazzani¹ & Marta Parazzini¹

¹ Istituto di Elettronica e di Ingegneria dell'Informazione e delle Telecomunicazioni, Consiglio Nazionale delle Ricerche, Milano, Italy, 20133

²Dipartimento di Elettronica, Informazione e Bioingegneria (DEIB), Politecnico di Milano, Milano, Italy, 20133 Keywords: Electroporation, ELF/LF, Completed (unpublished) Presented by: Emma Chiaramello

The use of time-varying magnetic fields was proposed as a non-invasive membrane permeabilization method, and, although the feasibility of the approach was proved by experimental results, the underlying mechanism is still poorly understood. This study focused on a numerical analysis of the transmembrane potential at cell membranes induced by time-varying magnetic fields and on a quantification of mechanical stress on the cell membrane induced by the magnetic and electric fields. TMP values were far below those needed for membrane permeabilization, with a strong dependence on distance of the cell from the coil. The preliminary assessment of the mechanical pressure showed stress values high enough to influence the pore opening mechanisms.

S13-3 [08:30]

High-speed strobe photography for direct observation of the charging dynamics caused by pulsed electric field effects

Allen Kiester¹, Zachary Coker¹, Bennett Ibey¹ & Joel Bixler¹

¹711 HPW RHDO/R, Air Force Research Laboratory, san antonio, TX, USA, 78234 *Keywords: Electroporation, Pulsed, Completed (unpublished)*

Presented by: Allen Kiester

A high performance strobe laser microscopy system has been developed for use in conjunction with FlouVolt[™] voltage sensitive dye for imaging variations in cell membrane potential during the application of electric pulses. The system allows flexible variation of trigger timing in order to image any time point of a cell-electric pulse interaction. Potential applications for the system include resolving the charging and discharging times of a cell membrane and estimation of cell membrane electro-physical constants to improve the cell circuit model for membrane charging.

S13-4 [08:45]

Nanosecond electric pulses trigger a rise in intracellular Ca²⁺ in GCaMP6f-expressing adrenal chromaffin cells in intact mouse adrenal slices

Nicole Procacci¹, Josette Zaklit², Vasilii Mansurov², Normand Leblanc³, Gale Craviso³ & Thomas Gould¹

¹Department of Physiology and Cell Biology, University of Nevada, Reno, NEVADA, USA, 89509

²Department of Electrical and Biomedical Engineering, University of Nevada, Reno , Reno, NEVADA, USA, 89509

³Department of Pharmacology, University of Nevada, Reno , Reno, NEVADA, USA, 89509 Keywords: In vitro, Pulsed, Work in Progress Presented by: Thomas Gould

Exposing dissociated adrenal chromaffin cells to nanosecond electric pulses (NEP) causes an instantaneous rise in intracellular Ca^{2+} due to Ca^{2+} influx via voltage-gated Ca^{2+} channels. The goal of this study was to test whether NEPs could similarly activate chromaffin cells in intact slices of the adrenal gland. For this purpose, adrenal slices were obtained from mice expressing the genetically-encoded Ca^{2+} indicator GCaMP6f in chromaffin cells. We characterized Ca^{2+} transients that occurred spontaneously as well as those induced by treatment with cholinergic agonists or stimulation with NEPs. These studies represent an important step toward developing NEP-based technologies to modulate excitable peripheral organ tissue noninvasively.

S13-5 [09:00]

Novel features of bipolar cancellation of Ca²⁺ influx via voltage-gated Ca²⁺ channels into adrenal chromaffin cells by ultrashort nanosecond electric pulses

Vasilii Mansurov¹, Gale Craviso², Normand Leblanc² & Josette Zaklit¹

¹Department of Electrical and Biomedical Engineering, University of Nevada, Reno, Reno, NV, USA, 89557 ²Department of Pharmacology, University of Nevada Reno School of Medicine, Reno, NV, USA, 89557 **Keywords: Electroporation, Pulsed, Work in Progress Presented by: Josette Zaklit**

Exposing adrenal chromaffin cells to a 2 ns bipolar pulse (BP) cancels Ca^{2+} entry via voltage-gated Ca^{2+} channels evoked by a unipolar pulse as long as the interval between the two phases of the BP does not exceed 10 ns. Here we report cancellation of Ca^{2+} influx by a 3 and 5 ns BP, requiring shorter interphase intervals for cancellation than for a 2 ns BP. For a 12 ns BP cancellation occurred in some cells and for a 25 ns BP it was never achieved. In cells in which Ca^{2+} responses were not cancelled by the BP, the response was often preceded by a small Ca^{2+} pre-peak and when cancellation occurred, Ca^{2+} transients were sometimes observed several seconds after BP delivery. Thus BP elicit multifaceted effects in this excitable cell type.

S13-6 [09:15]

Microsecond pulsed electric fields: an effective way to selectively target and radiosensitize medulloblastoma cancer stem cells

Mirella Tanori¹, Arianna Casciati¹, Alessandro Zambotti¹, Rosanna Pinto¹, Isabella Gianlorenzi², Alessandro Pannicelli³, Paola Giardullo¹, Barbara Benassi¹, Carmela Marino¹, Mariateresa Mancuso¹ & Caterina Merla¹ ¹Department of Sustainability, Italian National Agency for Energy New Technologies and Sustainable Economi, Rome, Italy, 00123

²Department of Ecological and Biological Sciences, University of Tuscia, Viterbo, Italy, 01100

³Energy Efficiency Department, Italian National Agency for Energy New Technologies and Sustainable Economi, Rome, Italy, 00123

Keywords: Electroporation, Pulsed, Completed (published) Presented by: Mirella Tanori

New therapeutic strategies are necessary to target cancer stem cells. Microsecond pulsed electric fields have been used to expose a cell model of human medulloblastoma, rich in cancer stem cells, and normal human astrocytes, representing healthy tissues surrounding the tumor. Our in vitro results showed irreversible membrane permeabilization, apoptosis and senescence processes via upregulation of GADD45A exclusively in medulloblastoma cancer stem cells. In the surviving cells reactive oxygen species generation was observed together with a cell cycle alteration. In vivo results demonstrated a significant tumor volume reduction after exposure and a complete inhibition of the tumor growth combining electric pulses with ionizing radiations.

S13-7 [09:30]

Analysis and control of calcium oscillations in differentiating mesenchymal stem cells using pulsed electric fields

Leslie Vallet¹, Franck Andre¹ & Lluis M. Mir¹

¹Université Paris-Saclay, CNRS, Institut Gustave Roussy, Metabolic and systemic aspects of oncogenesis (METSY), 94805, Villejuif, France

Keywords: Electroporation, Pulsed, Work in Progress Presented by: Leslie Vallet

Mesenchymal Stem Cells (MSCs) are adult stem cells able to differentiate into many cell types such as osteoblasts, adipocytes, or chondrocytes. For this reason, these cells have become very promising candidates for cell-based therapies these last decades. In another respect, calcium is a ubiquitous cellular second messenger, known to encode important information in the form of oscillations. MSCs exhibit spontaneous calcium oscillations, whose frequency is varying over the course of differentiation processes. The main question addressed in this work is to assess whether, by manipulating the frequency of calcium oscillations, using short high voltage pulsed electric fields, we could influence proliferation or differentiation events in MSCs.

Session: T2 Tutorial 2 - Systematic reviews in Bioelectromagnetic research Thursday September 30, 2021 • 09:45 - 10:45 Einstein Chairs: Myrtill Simko & Gunnhild Oftedal

T2-1 [09:45]

Assessing health risks from exposure to RF-EMF: The WHO approach

Emilie van Deventer¹

¹Department of Environment, Climate Change and Health, World Health Organization, Geneva, Switzerland, 1211

Biographical sketch

Dr Emilie van Deventer is the Team Lead of the Radiation and Health Unit in the Department of Environment, Climate Change and Health at the World Health Organization headquarters in Geneva, Switzerland. This Unit covers public health aspects of ionizing and non-ionizing radiation safety and provides information and guidance to national authorities on radiation protection and health. She is responsible, inter alia, for topics related to electromagnetic fields, optical radiation and radon. Before joining WHO in 2000, she was a tenured professor of Electrical and Computer Engineering at the University of Toronto, Canada. She holds a PhD from the University of Michigan, USA and an honorary doctorate (doctor honoris causa) from the University of San Marcos, Lima, Peru.

Abstract

The World Health Organization (WHO) has a long-standing history in reviewing the findings of research on the health effects of exposure to electromagnetic fields (EMF) [1,2]. In 2012, the WHO Radiation Programme initiated an update of the 1993 Environmental Health Criteria document on radiofrequency (RF) EMF [3]. A narrative review of the scientific literature was developed, and a draft made available for expert consultation in 2014, which provided valuable feedback for its update.

In parallel to this work, WHO adopted internationally recognized methods and standards for guideline development to ensure that its guidelines are of the highest quality [4], requiring that all WHO health guidelines be based on a systematic review of the literature.

In the case of environmental exposures, such process starts with the formulation of a clear question that defines the targeted population (P), the exposure (E) under consideration, a comparator (C) and the outcome (O) of interest, namely a PECO question. Often, exposure to a specific agent may lead to several adverse health effects or, as in the case of RF research, to the study of many health outcomes. The narrative review highlighted studies related to over 30 outcomes. In view of the time and resources needed to complete such review, it was deemed important to restrict the questions to those dealing with the areas of greatest controversy or uncertainty. Thus, WHO conducted a broad international survey in 2018 to prioritize potential adverse health outcomes from RF exposure. Ten major topics were identified for which WHO has commissioned systematic reviews to analyze and synthesize the available evidence [5]. The systematic reviews follow explicit methods that minimize bias to identify, select, and critically appraise relevant research, and extract and analyse data from the studies included in the review.

References

- 1. World Health Organization. Static Fields. Geneva, Switzerland: WHO, International Programme on Chemical Safety; 2006.
- 2. World Health Organization. Extremely Low Electromagnetic Fields. Geneva, Switzerland: WHO, International Programme on Chemical Safety; 2007.
- 3. World Health Organization. Electromagnetic fields (300 Hz to 300 GHz). Geneva, Switzerland: WHO, International Programme on Chemical Safety; 1993.

- 4. World Health Organization. WHO Handbook for guideline development. Geneva, Switzerland; 2014.
- Verbeek, J.; Oftedal, G.; Feychting, M. et al. Prioritizing health outcomes when assessing the effects of exposure to radiofrequency electromagnetic fields: A survey among experts. Environ Int 2021;146. https://doi.org/10.1016/j.envint.2020.106300

T2-2 [10:15]

Introducing COSTER: recommendations for conducting systematic reviews of environmental health questions

Paul Whaley¹

¹Lancaster Environment Centre, Lancaster University, Lancaster, UK, LA1 4YQ

Biographical sketch

Paul Whaley researches systematic methods for mapping and reviewing scientific evidence of human health risks posed by exposure to chemical substances and other environmental challenges. He is an experienced specialist editor of environmental health systematic reviews, having handled over 300 manuscripts and worked with the US EPA, US National Toxicology Program, and World Health Organization, among others. He also has a strong interest in approaches to improving the quality of published environmental health research, both primary and secondary. This extends to making research methods and findings FAIR (findable, accessible, interoperable, and reusable), understanding how ontologies, knowledge databases, and artificial intelligence can help us deliver fast, systematic

syntheses of evidence.

Abstract

Guidance and standards for research can play an important role in helping scientists plan, conduct, and report high quality studies. Published in 2020, the COSTER (Conduct of Systematic reviews in Toxicology and Environmental health Research) recommendations represent the first formal guidance for planning and conducting systematic reviews of environmentalhealth research. A draft version of the recommendations informed the systematic reviews underpinning the recent WHO and ILO estimates burden of disease from occupational environmental exposures, they have been adopted by the journal Environment International in their guidance to authors, and the final published version is being used by the research teams conducting the new WHO systematic reviews of health effects from exposure to electromagnetic frequency radiation. This presentation will explain the genesis of COSTER and the methods for its development, compare it to other systematic review guidance, describe the core recommendations that are specific to or particularly important for the environmental health context, and discuss how it can best be utilised by researchers looking to conduct high quality systematic reviews.

Coffee Break Thursday September 30, 2021 • 10:45 - 11:15

Session: P4 Plenary 4 - Electrogene transfer: challenges and recent advances in DNA-based vaccines Thursday September 30, 2021 • 11:15 - 12:15 Einstein Chairs: Olga Zeni & Lluis M. Mir

P4-1 [11:15]

Electrogene transfer: challenges and recent advances in DNA-based vaccines

Simona Salati¹

¹IGEA Biophysics Laboratory, Carpi, Italy, 41012

Biographical sketch

Simona Salati received her Doctorate degree in Biotechnology and Molecular Medicine in 2007 from the University of Modena and Reggio Emilia. She carried out her postdoctoral training in the lab directed by Dr. Bhatia, at the Stem Cell and Cancer Research Institute, Canada. Her research activity has been focused on the study of the molecular mechanisms regulating self-renewal and differentiation of normal and leukemic hematopoietic stem cells.

She is currently research coordinator of pre-clinical studies at IGEA, Italy. Her research interest is now focused on the application of the electroporation technology for Electro Gene Transfer and on the study of effects of pulsed electromagnetic fields on biological systems, such as bone, articular cartilage and

neurons.

She is co-author of 35 peer-reviewed papers.

Abstract

Since the identification of the SARS-CoV-2 virus, an exceptional effort by the scientific community has led to the development of hundreds of vaccine projects. Over 40 are now undergoing clinical evaluation, and four have been approved for emergency use. The technologies exploited are diverse, each of which being associated with advantages and disadvantages. The different candidate vaccines can be grouped based on the technological platform exploited to elicit a protective immune response. Genetic vaccines (RNA or DNA) are based on nucleic acids coding for the Spike protein carried out by liposomes, adenoviruses or electroporation. Classical vaccines are either based on attenuated/inactivated SARS-CoV-2 viruses or on recombinant viral protein(s).

DNA-based vaccines offer a number of potential advantages over traditional approaches, including the activation of both cellular and humoral responses, the absence of any infectious agent, the relative ease of large-scale manufacture, rapid adaptation to antigenic variants, and the potential to be used in settings devoid of a cold chain. In the past, the effectiveness of DNA vaccine has been dampened by inefficient delivery systems of the plasmid DNA into mammalian cells and nuclei in vivo. Electroporation (EP) has been shown to overcome this issue. EP increases the permeability of the cell membrane to molecules that scarcely penetrate into the cell, such as DNA and RNA molecules. On this basis, EP has been applied for non-viral mediated electrogenetransfer (EGT) in either gene therapy or DNA vaccination settings. The first reports showing that the direct injection of plasmid DNA carrying eukaryotic genes into the mammalian muscle leads to endogenous expression of the encoded protein and to a specific immune response against that protein, were published in the early 90s and provided the basis for the development of DNA-vaccines. Nowadays, DNA-based vaccines represent a promising tool for the fight against many important challenges to human and animal health, including infectious diseases and cancer.

The thrust of the pandemic has pushed several DNA vaccine candidates into clinical trials, so far demonstrating a remarkable degree of immune potency and tolerability.

The Cliniporator technology is currently applied in three different clinical programs (one in the US and two in Europe) for the development of DNA-based vaccines against SARS-Cov-2, showing so far promising pre-

clinical results.

DNA vaccines represent an important tool in the fight against the COVID-19 pandemic thanks to their rapid adaptability to newly emerging variants and to their ability to accommodate more than one viral antigen, nurturing the hope of developing a universal COVID-19 vaccine immunizing towards evolutionary conserved SARS-CoV2 antigens.

Session: T3 Tutorial 3 - Study Quality and Reproducibility – Pillars for safety assessments and medical applications in Bioelectromagnetics Thursday September 30, 2021 • 12:15 - 13:15 Einstein Chairs: Mats-Olof Mattsson & Niels Kuster

T3-1 [12:15]

Quality analysis in EMF research, where are we and why does quality matters?

Myrtill Simko^{1, 2} ¹SciProof International AB, Östersund, Sweden, 83132

²Institute for Advanced Studies, Strömstad Akademi, Strömstad, Sweden, 45280

Biographical sketch

Myrtill Simkó is professor of cell and molecular biology and is scientific director at SciProof International AB in Östersund, Sweden. Her research focuses on the mode of action of cell reactions after exposure to physical agents such as EMF, and physicochemical agents such as nanomaterials. The research in bioelectromagnetics includes beside mechanistic studies also the use of diagnostics and therapeutics based on EMF. She pioneered the idea that ELF-MF positively modulates the immune system, an area where she has published numerous publications, book chapters, and review articles. Her focus is also on high quality experimental work including exposure conditions and biological studies.

She is and has been an invited expert for several health risk assessment expert groups, such as the WHO and SCENIHR, as well as other national and international scientific committees.

She studied Biology in Giessen, Germany, made her Doctoral thesis in the German Cancer Research Center in Heidelberg, and was Postdoc in Munich at the LMU-University. She made her academic career at the University of Rostock, Germany where she scrutinized the effects of EMF in vitro. In Vienna, Austria she worked also with Nanotechnology Risk Assessment at the Austrian Academy of Sciences and at the Austrian Institute of Technologies.

Abstract

The goal of this Tutorial is to provide practical information and tips how to perform good quality experimental work for EMF research if you want to make a difference. Furthermore it tries to answer and discuss some relevant open questions.

The question regarding electromagnetic fields (EMF) at environmentally relevant levels and health related effects is still able to give rise to controversy. EMF research is ongoing since many decades and has produced numerous publications showing uncountable results with or without findings, by applying different (from static to high frequency) electromagnetic fields as the exposure source, using different living systems, exposure durations etc. By using the search term "electromagnetic fields and health effects" in PubMed the number of available publications is 2,858. By changing the word "health" to "biological" the number changes to 4,165 publications (see figure 1).

So, why can we not once and for all answer the question whether there is a health related or a biologically

relevant effect caused by any kind of EMF exposure at levels that are below exposure guidelines? Why are certain research groups identifying an "effect" whereas other groups are not able to reproduce them? Why do different commissions/expert groups or institutions sometimes interpret the available publications differently?

This list of questions can be expanded, however we want to get at least some answers instead of more questions. A very frequently cited answer is: "The available biological studies do not provide sufficient and adequate information for a meaningful safety assessment". What can we do to obtain and/provide sufficient information for safety assessment?

It is known that many studies are of poor quality regarding the exposure conditions but also regarding the experimental procedures, which is the main reason for the lack of reproducibility and the conflicting results. Therefore the most relevant improvement is to employ standard operation protocols (SOPs) for both the biological and for the physical conditions in EMF research. Such protocols must be based on meaningful criteria. For biological/toxicological investigations SOPs already exist in different settings. Regarding the exposure conditions/controls etc. many publications have stated and determined the importance of standards, however this is often not considered. Furthermore, scientists must have hypothesis-based studies, putting the obtained results into the right perspective. By a "finding" it is especially important to understand whether a "result" is biologically relevant or possible, "just" a statistically significant difference from the (right) controls.

Another and not less important element of data interpretation is the statistical analysis of the data. Scientists must know that this is a mathematical aspect of the data – must not mix it up with real effects. A statistically significant difference does not necessarily imply a real effect!

In addition, we have to distinguish the importance and usefulness of in vivo and in vitro studies. We need to know what type of study that can be used for which aspect of a risk assessment? Many scientists summarize their in vitro studies with the conclusion that "the results show that EMF can cause e.g. cancer". In vitro studies do not answer complex in vivo effects/conditions, but are very useful to examine the hazard potential and/or the mode of action of the exposure! For completeness, in vivo studies tests whole, living organisms, and epidemiological studies provide information of the distribution of diseases and other health-related conditions in populations in context of an exposure. All three kinds of studies, epidemiological, in vivo and in vitro are needed for risk assessment.

Therefore the goal of this Tutorial is to provide practical information and tips how to perform good quality experimental work for EMF research if you want to make a difference. Furthermore it tries to answer and discuss some of the above-mentioned questions.

Figures

RESULTS BY YEAR	16,460 results			2021
Figure 1. EMF related publications on PubMed between 1981 und 2021 using the search terms "electromagnetic fields and effects".				

T3-2 [12:45]

Implications of "metascience" research to improve the quality of bioelectromagnetics research

Vijayalaxmi¹ & Kenneth Foster²

¹Department of Radiology, San Antonio, TX, USA, 78229

²Department of Bioengineering, University of Pennsylvania, Philadelphia, PA, USA, 19104

Biographical sketch

Dr. Kenneth R. Foster received the Ph.D. degree in physics from Indiana University, Bloomington, IN, USA, in 1971. He was with the U.S. Navy, Naval Medical Research Institute, Bethesda, MD, USA, from 1971 to 1976. Since 1976, he has been with the Department of Bioengineering, University of Pennsylvania, Philadelphia, PA, USA, where he is currently Professor Emeritus. He has been involved in studies on the interaction of nonionizing radiation and biological systems, including mechanisms of interaction and biomedical applications of radio frequency and microwave energy. In addition, he has written widely about scientific issues related to possible health effects of electromagnetic fields. He has authored

approximately 170 technical papers in peer-reviewed journals, numerous other articles, and two books related to technological risk and the law. In 2016 he received the d'Arsonval Award from the Bioelectromagnetics Society for contributions to the field of bioelectromagnetics. He is a longtime member of TC 95 of the IEEE International Committee on Electromagnetic Safety (which sets safety limits for radiofrequency energy) and a member of the Physical Agents Committee of the American Conference of Industrial Hygienists, among many other professional activities.

Abstract

This Workshop presentation will review implications of "metascience" (a new research area that seeks to improve the quality of scientific research) for RF bioeffects studies. The presentation will discuss topics that can lead to false discovery: misuse of null hypothesis significant testing (NHST) and p-value to identify effects, and undisclosed flexibility in data collection and analysis and weaknesses in study design that can compromise internal validity of studies. Many of these issues can be addressed by more careful study design and fuller reporting of results; others (e.g., improved RF dosimetry) may require expensive instrumentation and numerical modeling of exposure.

The 2005 publication of loannidis' famous paper "Why most published research findings are false" [i] led to the development of a new scholarly field, metascience [ii], and to efforts such as the Open Science Foundation that seek to increase the reliability of scientific research. Two issues with particular relevance to RF bioeffects studies: (a) misuse of null hypothesis significance testing (NHST) and p-value to identify biological effects of exposure, and (b) low statistical power and deficiencies in study design and execution that introduce high risk of bias (RoB). Numerous statisticians have shown that NHST with p<0.05 is a highly unreliable approach to identify new phenomena, and some journal editors now discourage use of "p-values" or at least urge authors to accompany NHST with a more compete descriptive analysis with fuller reporting of results and methods. The talk will briefly review three recent reviews of RF bioeffects studies in which each was assessed using the same set of five RoB criteria (adequate dosimetry and temperature control, blinded design, use of sham and positive controls). Only a tiny fraction of the studies satisfied all five criteria. The studies were all quite small, typically involving comparisons of groups of 5 or fewer exposed animals. In many cases, the analysis appeared to be post-hoc, without prespecified hypotheses and methods of analyzing data. A majority of the studies reported statistically significant effects of some sort or other, over very wide ranges of exposure and frequency. The present authors suggest that the quality of such studies could be improved considerably by improved study design and better reporting of results, at modest cost. The present authors suggest a "carrot and a stick" approach to improving the quality of RF bioeffects papers: adequate support for high-quality RF exposure and dosimetry by funding agencies, and risk of bias assessments of papers submitted to journals and being considered for systematic review by health agencies.

[i] Ioannidis JP. Why most published research findings are false. PLoS Med. 2: e124, 2005.

[ii] Fidler, Fiona and John Wilcox, "Reproducibility of Scientific Results", The Stanford Encyclopedia of

Philosophy (Winter 2018 Edition), Edward N. Zalta (ed.), URL = <https://plato.stanford.edu/archives/win2018 /entries/scientific-reproducibility/>.

Lunch Thursday September 30, 2021 • 13:15 - 14:30

Session: M4 Merger Announcement Thursday September 30, 2021 • 14:00 - 14:30 Einstein

Session: W4 Workshop 4 - Sensitivity to EMF: The Present and The Future Thursday September 30, 2021 • 14:30 - 16:00 Einstein Chairs: Dariusz Leszczynski & Maryse Ledent

W4-1 [14:30]

Workshop Introduction

Dariusz Leszczynski¹ ¹*University of Helsinki, Helsinki, Finland*

The ongoing deployment of 5G wireless communications together with the expansion of the internet social media has led to galvanization of the anti-5G activist movement. Activists are concerned that their health will be affected by the radiation emitted by the 5G networks where base stations will be densely distributed and in close proximity to dwellings and placer of work. Currently available research, predominantly based on psychological provocation studies, does not provide sufficiently reliable evidence of the lack of causality link between health and exposures to EMF.

The proposed EHS workshop will address a number of unresolved questions concerning the EHS:

How certain we are that EHS exists?

What could be the mechanism of how EHS develops in population?

What role in developing EHS plays the density of EMF emitters and what chemical polluters?

Are current ICNIRP safety guidelines sufficient to protect persons with self-declared EHS?

How reliable and how useful, for setting health policies, is the to-date published EHS research?

What additional impact may have 5G on EHS, or will it remain the same as with 3G and 4G?

What new research should be done to get more insight into EHS physiology and psychology?

W4-2 [14:35]

Hypersensitivity and vulnerable populations in environmental epidemiology

Martin Röösli^{1, 2}

¹Swiss Tropical and Public Health Institute, Basel, Switzerland

²University of Basel, Basel, Switzerland

Individuals are reacting to environmental stressors differently owned to various factors such as genetic predisposition, metabolism, co-exposures, socioeconomic status, health literacy etc. In public health,

protection of vulnerable populations has received substantial attention in the last few decades. On the top of this natural variation, the existence of so-called hypersensitivity phenomenon has been suggested for various environmental exposures such as chemicals, noise or electromagnetic fields. The basic idea behind is that affected individuals react to substantially lower exposure levels outside the typical variation in the population, similar to individuals with an allergy. Implications for research and therapy are discussed.

W4-3 [15:00] Young Scientist

How did EHS became a public issue? The case of France

Maël Dieudonné¹

¹Departement of Public Health, University Hospital of Lyon, Lyon, France, 69003

EHS is characterized by the attribution of symptoms to EMF exposure, which has proven impossible to corroborate and is biologically implausible. How can EHS persons identify as such nonetheless? This question was already addressed at the individual level. It is tackled here at a collective level, by studying how EHS spread and eventually became a public problem in France, using qualitative data consisting in interviews with various stakeholders and a corpus of documents. Results show that EHS emerged as a spin-off from a larger controversy around cell sites, making it easier for people with unexplained symptoms to self-diagnose as EHS, then to fight for the recognition of their condition. Implications of this account are discussed.

W4-4 [15:25]

An urgent necessity for overhaul of electromagnetic hyper-sensitivity (EHS) research

Dariusz Leszczynski¹

¹University of Helsinki, Helsinki, Finland

Part of the population considers themselves as sensitive to the man-made electromagnetic radiation (EMF). Sensitivity is characterized by a broad variety of non-specific symptoms. While symptoms are currently considered as a real life impairment, the factor causing them remains unclear. The to-date published scientific studies are of insufficient methodology to reliably examine the cause of sensitivity to EMF. There is a need for a new research direction by combining psychological provocation with physiological biochemistry approach. I will present inadequacies of the past research and propose direction for the new sensitivity research.

W4-5 [15:45]

Discussion

Coffee Break Thursday September 30, 2021 • 16:00 - 16:30

Student Award Thursday September 30, 2021 • 16:30 - 17:00 Einstein

Young Scientist Award Thursday September 30, 2021 • 17:00 - 17:15 Einstein

Closing session Thursday September 30, 2021 • 17:15 - 17:45 Einstein

Session: FS Student Flash Poster Session Monday September 27, 2021 • 14:00 - 15:00 Einstein Chairs: Florence Poulletier De Gannes & Martin Röösli

FS-1 [14:00] STUDENT PAPER

Use of a detailed anatomical model in electrochemotherapy applied to spinal metastasis

Federico Rossano¹, Micol Colella¹, Alessandra Paffi¹, Roberta Fusco², Francesca Apollonio¹, Matteo

Cadossi² & Micaela Liberti¹

¹Department of Information Engineering, Electronics and Telecommunications (DIET), University of Rome "La Sapienza", Rome, Italy, 00184

²IGEA Biophysics Laboratory, Carpi, Italy, 41012 Keywords: Electroporation, Pulsed, Work in Progress Presented by: Federico Rossano

Electrochemotherapy (ECT) combines the principle of electroporation with chemotherapy drug in order to treat localized tumors by using a single administration of the chemotherapeutic drug. This study proposes the numerical evaluation of the treatment of a spinal metastasis in the T12 vertebra in a detailed anatomical model (Duke), using four needle electrodes inserted within the tumor, through the vertebra pedicles, as performed in spinal surgery.

FS-2 [14:03] STUDENT PAPER

Basic study on non-thermal effects in electro-sterilization using 500kHz burst current for *Streptococcus mutans*

Futa Okido¹, Masatake Akutagawa¹, Hiromichi Yumoto², Takahiro Emoto¹, Hiroo Tarao³, Toshihiko

Tominaga⁴, Kouji Hirao², Toshitaka Ikehara⁵, Emiko Yasuno⁶ & Yohsuke Kinouchi¹

¹electrical and Electronic Engineering, Tokushima, Japan, 770-8506

²Periodontology and Endodontology, Tokushima, Japan, 770-0042

³Electrical & Computer Eng., Takamatsu, Japan, 761-8058

⁴Tominaga Dental Clinic, Naruto, Japan, 771-0360

⁵Institute for Health Sciences, Tokushima, Japan, 770-8514

⁶Department of Creative Technology, Anan, Japan, 774-0017

Keywords: In vitro, IF, Work in Progress Presented by: Futa Okido

The major current treatment of the apical periodontitis had been cleaning of the root canal with chemicals and specialized equipment. Recently electro-magnetic apical treatment called EMAT have been proposed. However, optimal conditions and sterilization mechanisms in treatment have not been clarified sufficiently. In this study, comparative experiment was carried out by both heat sterilization(hs) and electro-sterilization(es) to examine non-thermal effect by electro-sterilization. As results of experiments, it was not observed that electro-magnetic stimulation promote sterilization effect by non-thermal effect.

Effect of gyrus folding angle on peak electric field in cerebral cortex

Lorette Quéguiner¹, Gabriel Gaugain¹, Julien Modolo² & Denys Nikolayev¹

¹IETR (Institut d'Électronique et des Technologies du numéRique) UMR 6164, CNRS, Rennes, France, 35000

²LTSI (Laboratoire de Traitement du Signal et de l'Image) U1099, INSERM, Rennes, France, 35000 Keywords: Dosimetry (computational), All Frequencies, Completed (unpublished) Presented by: Lorette Quéguiner

Reported transcranial current stimulation (tCS) effects on cerebral activity leave numerous questions open regarding the involved mechanisms of action. A number of studies have identified clear physiological effects, however it remains to be understood how to take into account interindividual variability to tCS: For example, to what extent does individual brain geometry, such as cerebral tissues morphology, impact this prediction? Here, we aimed at evaluating how the geometry of cortical tissue surfaces impacts the charge distribution and therefore the electric fields induced by tCS.

FS-4 [14:10] STUDENT PAPER

Sensitivity study of tumor and tissue properties on electroporation-based treatments in oncology

Prashanth Lakshmi Narasimhan^{1, 2}, Zoi Tokoutsi¹, Davide Baroli³, Marco Baragona¹, Karen Veroy² & Ralph Maessen¹

¹Philips Research, Eindhoven, the Netherlands, 5656 AE

²Centre for Analysis, Scientific computing, and Applications, Eindhoven University of Technology, Eindhoven, the Netherlands, 5612 AZ

³Aachen Institute for Advanced Study in Computational Engineering Science, RWTH Aachen University, Aachen, Germany, 52062

Keywords: Electroporation, Static, Work in Progress Presented by: Prashanth LakshmiNarasimhan

This work talks about a global sensitivity analysis for Electroporation-based cancer treatments (EBTs). The various treatment parameters (like the relative tumor positions w.r.t electrodes and the tissue properties) in EBT are commonly associated with uncertainties and these can influence the outcome in treatment planning. One approach to screen the significance of the parameters on the treatment outcome is a one-step-at-a-time method called Morris analysis. The results estimate the relative significance of the parameters for different treatment outcomes. This study can be a foundation towards incorporating uncertainties in the treatment planning strategies.

FS-5 [14:14] STUDENT PAPER

Age-dependent SAR assessment based on the accuracy of tissue mass density values

Fatima Alzaabi¹, Yasir Alfadhl¹, Xiaodong Chen¹ & Azadeh Peyman²

¹Antennas & Electromagnetics Research Group, Queen Mary University of London, London, United Kingdom ²Radiation Dosimetry Department, Public Health England, Didcot, Oxfordshire, United Kingdom Keywords: Dosimetry (computational), RF/Microwaves, Work in Progress Presented by: Fatima Alzaabi

This paper evaluates potential effects of age-dependent properties related to tissue mass density on SAR values within a child model. Exposure scenariosplane waves at two frequency points of 868 MHz and 2450 MHz were considered to evaluate SAR changes (peak SAR and WBSAR) using the volume tissue average (10 g). Preliminary results show that certain percentage variation in the mass density as a function of age has

a direct effect on the calculated SAR and WBSAR figures. Further work involves realistic and accurate evaluation of age-dependant tissue mass densities, along other model dimensions and dielectric properties to increase the confidence in the computed SAR values.

FS-6 [14:17] STUDENT PAPER

Design of a low-cost modular 5G RF-EMF exposure sensor

Kenneth Deprez¹, Sam Aerts¹, Arno Thielens¹, Gunter Vermeeren¹, Luc Martens¹ & Wout Joseph¹ ¹Department of Information Technology, Ghent University/IMEC, Ghent, Belgium, 9052 Keywords: Dosimetry (measurements), RF/Microwaves, Work in Progress Presented by: Kenneth Deprez

Spatio-temporal radiofrequency (RF) electromagnetic field (EMF) exposure assessment is currently of great interest as concerns about RF-EMF exposure of the public and governmental bodies arise. To perform long-term spatio-temporal EMF exposure assessment in current and future telecommunications networks, low-cost RF-EMF exposure sensors have been designed to measure up to four frequency bands, which are determined based on the project and/or environment specifications, that are used by current telecom technologies (2G up to 4G) and in the upcoming 5G New Radio (NR) networks. Sufficiently high sampling rates for the targeted application are feasible and thus highly detailed temporal exposure assessment over a long period is possible.

FS-7 [14:21] STUDENT PAPER

Challenges in four-electrode probe measurement – Data acquisition system and probe hardware for low frequency dielectric spectroscopy

Cindy Karina¹, Nishtha Chopra², Myles Capstick¹, Azadeh Peyman², Sina Hashemizadeh¹ & Niels Kuster^{1, 3}

¹IT'IS Foundation, Zürich, Switzerland

²Radiation Dosimetry, Public Health England, London, United Kingdom

³Departments of Information Technology and Electrical Engineering, ETH Zürich, Zürich, Switzerland **Keywords: Electrochemistry, ELF/LF, Work in Progress Presented by: Cindy Karina**

This paper presents experimental evaluation of dielectric properties using a four-electrode probe and a commercial impedance analyser in measuring high loss samples at frequencies < 1MHz. The study also attempts to overcome the electrode polarisation effect using equivalent circuit modelling. Finally, feasibility of a probe with embedded electronic circuits is studied as an approach to eliminate the need for commercial impedance analysers and to minimize stray capacitance and electrode polarization effects at extremely low frequencies.

FS-8 [14:24] STUDENT PAPER

Study protocol to continuously monitor extremely low-frequency and radiofrequency electromagnetic fields exposure in Switzerland: the SwissNIS project

Nicolas Loizeau^{1, 2}, Marco Zahner^{3, 4}, Jürg Fröhlich^{3, 4}, Erik Bühlmann⁵, Christa Stephan⁵, Markus Gugler⁶, Marloes Eeftens^{1, 2}, Stefan Dongus^{1, 2}, Alexander Reichenbach⁷, Sebastian Egger⁷, Toni Ziegler⁵ & Martin Röösli^{1, 2}

¹Department of Epidemiology and Public Health, Swiss Tropical and Public Health Institute, Basel,

Switzerland, 4051 ²University of Basel, Basel, Switzerland, 4051 ³Fields at Work GmbH, Zürich, Switzerland, 8032 ⁴Institute of Electromagnetic Fields (IEF), ETH Zürich, Zürich, Switzerland, 8092 ⁵Grolimund + Partner AG Environmental Engineering, Bern, Switzerland, 3006 ⁶NED-TECH AG, Wangen an der Aare, Switzerland, 3380 ⁷Federal Office for the Environment (FOEN), Swiss Confederation, Bern, Switzerland, 3003

Keywords: Epidemiology, RF/Microwaves, Concept Presented by: Nicolas Loizeau

Exposure to electromagnetic fields (EMF) is continuously changing in our daily environment due to the constant development of technology. The Federal Office for the Environment (FOEN) has commissioned the SwissNIS consortium to assess the extremely low frequency magnetic fields (ELF-MF) and radiofrequency (RF) EMF exposure of the Swiss population in their everyday life from 2021 to 2025. The SwissNIS study protocol describes yearly mobile microenvironmental measurements, home visits and continuous fixed site measurements in Switzerland. Yearly spatial and temporal trends of ELF-MF and RF-EMF exposure will be evaluated during the course of the project.

FS-9 [14:28] STUDENT PAPER

Model based conception of microelectrodes for High Frequency Oscillations Recording and Detection

Gautier Dauly¹, Gabriel Dieuset¹, Seyedeh-Hajar Mousavi², Esma Ismailova², Pascal Benquet¹, Fabrice Wendling¹ & Mariam Al-harrach¹

¹LTSI U1099, F-35000, INSERM, Rennes, France, 35042

²Bioelectronics, CMP-EMSE, MOC, Gardanne, France, 13541 Keywords: Mechanistic/Theoretical, All Frequencies, Work in Progress Presented by: Gautier Dauly

High Frequency Oscillations (HFO, 40-600 Hz) and particularly Fast Ripples (FR, 200-600 Hz) are short transient events that appear on intracerebral EEG. They are considered as a rieliable biomarker of the Epileptogenic Zone. Microelectrodes used for FRs recording posses a high impedance which leads to attenuation and distortion in the signals. This paper presents a model-guided approach in the conception of microelectrodes optimized for the recording of FRs. In particular, the coating the metal microelectrodes with a conducting polymer such as poly(3,4-ethylenedioxythiophene) polystyrene sulfonate (PEDOT:PSS).

FS-10 [14:31] STUDENT PAPER

The numerical approach for the validation of a risk assessment under low-frequency electric field exposures

Mengxi Zhou¹, Julien Claudel¹, Djilali Kourtiche¹, Isabelle Magne², Martine Souques² & François Deschamps³

¹Département Nanomatériaux, électronique et Vivant, Institut Jean Lamour (UMR 7198), Université de Lorraine - CNRS, Nancy, France, 54000

²Service des Etudes Médicales, EDF, Paris, France, 75017

³Département Concertation et Environnement, RTE, Paris-La Défense, France, 92400 Keywords: Dosimetry (computational), ELF/LF, Work in Progress Presented by: Mengxi Zhou The risk of the cardiac implant wearers under occupational exposures to the electromagnetic fields has been highlighted by the 2013/35/EU European Directive. We proposed in this study the numerical approach to validate a risk assessment under low-frequency electric field exposures. The human models and the phantom for in vitro experiments were studied by using numerical simulations to determine the relation between induced current density and the external electric field. The exposure system is modeled in order to reproduce induced phenomena on a cardiac implant inside a human body under electric field exposures. The results give references for the future experimental measurements.

FS-11 [14:35] STUDENT PAPER

Numerical assessment of the exposure to Transcranial Magnetic Stimulation coil: male and female anatomical model comparison

Simona D'Agostino^{1, 2}, Micol Colella¹, Micaela Liberti¹, Rosaria Falsaperla² & Francesca Apollonio¹

¹Department of Information Engineering, Electronics and Telecommunications, Rome, Italy, 00184

²Department of Occupational and Environmental Medicine, Epidemiology and Hygiene,, INAIL, Monte Porzio Catone, Italy, 00078

Keywords: Dosimetry (computational), ELF/LF, Work in Progress Presented by: Simona D'Agostino

The purpose of this work is to carry out a comparative evaluation of the electromagnetic assessment between male and female human anatomical models representing medical staff during transcranial magnetic stimulation (TMS) treatment, by means of numerical dosimetry. Electromagnetic exposure is evaluated using discretized realistic human body models and considering as a source a TMS circular coil. The results of the induced electric field in the human models show that in some cases the exposure limits are exceeded, but also show that the exposure assessment seems to depend on operator's gender. This study could be a useful starting point for future risk assessment studies and for providing general safety guidance.

FS-12 [14:38] STUDENT PAPER

Super high frequency (18 GHz) electromagnetic field effects on *Bacillus subtilis* spores

Erim Kosyer¹, Palalle G. Tharushi Perera¹, Denver Linklater¹, Rodney Croft^{2, 3} & Elena P. Ivanova^{1, 2}

¹Physics, RMIT University, Melbourne, Australia, 3001

²Australian Centre for Electromagnetic Bioeffects Research, Wollongong, Australia

³University of Wollongong, Wollongong, Australia

Keywords: Mechanistic/Theoretical, RF/Microwaves, Work in Progress Presented by: Erim Kosyer

As wireless technologies are constantly developing and taking leaps into the future, so do the number of electromagnetic fields (EMF) we are exposed to emitted from these devices. These EMFs range in wavelengths from a single biomolecule to whole organisms. It is understood the thermal mechanisms of interaction are responsible for possible negative effects associated with EMFs. Furthermore, there is currently no evidence surrounding non-thermal mechanisms and its possible contribution to these negative effects. Due to this gap in understanding, it brings forth a possible query that may have important ramifications for current guidelines and standards. Consequently, this issue requires further exploration.

FS-13 [14:42] STUDENT PAPER

Collocated and distributed Massive MIMO from the human EMF exposure perspective: a comparative

study

Sergei Shikhantsov¹, Arno Thielens¹, Gunter Vermeeren¹, Emmeric Tanghe¹, Piet Demeester¹, Luc Martens¹ & Wout Joseph¹

¹Department of Information Technology, Ghent University/IMEC, Ghent, Belgium, 9000 Keywords: Dosimetry (computational), RF/Microwaves, Completed (unpublished) Presented by: Sergei Shikhantsov

In this numerical study we compare two deployment strategies of massive MIMO from human exposure perspective. Propagation is modelled using the Ray-Tracing method at 3.5 GHz in a stochastic environment model. An indoor industrial environment is modelled as a square room and scatterers randomly distributed in it. Two base station (BS) configurations are studied: a compact antenna array and an array evenly covering the floorplan ceiling. The exposure is assessed in terms of the psSAR the head normalized to the power density, using the FDTD method. The exposure of the distributed BS is found to be at least two times lower than that of the collocated BS. Implications for the exposure of practical massive MIMO implementations are discussed.

FS-14 [14:45] STUDENT PAPER

A grid electrode for *in-vitro* studies under stimulation of nanosecond electric pulses

Wen Dang¹, Xin Rao², Xiaodong Chen^{1, 2} & Yasir Alfadhl¹

¹School of Electronic Engineering and Computer Science, Queen Mary University of London, London, United Kingdom, E1 4NS

²Circuits and Systems Key Laboratory of the Ministry of Education, Hangzhou Dianzi University, HangZhou, China, 310018

Keywords: In vitro, Pulsed, Work in Progress Presented by: Wen Dang

Intensive nanosecond pulsed electrical fields (nsPEF) have been applied to induce a range of biological effects for the therapeutic purpose. High voltage nanosecond pulses are usually applied across a narrow metal plate cuvette in in-vitro studies. However, due to a high conductivity of the cell load culture, the resistance tends to be as low as a few tens of Ohms if a large volume of the cell samples is loaded. The low cell load resistance will result in a large current flow- posing a technical challenge to the pulse generator and also distort the pulses. In this paper, the grid electrode is proposed to increase the cell load resistance and reduce the parasitic capacitance, which exhibits an improved performance based on EM simulation.

FS-15 [14:49] STUDENT PAPER

Electromagnetic characterization of PEMFs for the neuroprotective treatment of ischemic strokes in semi-specific models: a comparison between an active and a placebo patient

Sara Fontana¹, Micol Colella¹, Simona Salati², Stefania Setti², Francesca Apollonio¹, Ruggero Cadossi² & Micaela Liberti¹

¹Department of Information Engineering, Electronics and Telecommunications (DIET), University of Rome "La Sapienza", Rome, Italy, 00184

²IGEA Biophysics Laboratory, Carpi, Italy, 41012 Keywords: Dosimetry (computational), ELF/LF, Work in Progress Presented by: Sara Fontana

The application of low intensity and low frequency pulsed electro-magnetic fields (LF-PEMFs) may represent a neuroprotective approach for the treatment of cerebral damages in patients affected by acute ischemic

stroke. An ongoing randomized, placebo-controlled, double-blind study aims to validate the PEMFs as a noninvasive, effective, tolerable, and safe treatment, as an adjunctive treatment to drug therapies already in use. This work proposes a dosimetric study on semi-specific models of a placebo and an active patient, to preliminary confirm the possible correlation between the evolution of ischemic lesion and the magnetic field values, as observed in active patients.

FS-16 [14:52] STUDENT PAPER

Influence of the 4G/5G dynamic spectrum sharing on human RF exposure to mobile radio services

Lisa-Marie Schilling¹, Christian Bornkessel¹ & Matthias Hein¹

¹*RF* & *Microwave Research Laboratory, Thuringian Center of Innovation in Mobility, TU Ilmenau, Ilmenau, Germany*

Keywords: Dosimetry (measurements), RF/Microwaves, Work in Progress Presented by: Lisa-Marie Schilling

The gradual shutdown of the 3G mobile radio network in Germany releases spectral resources in the 2100 MHz band which can be used for successor technologies such as 4G and 5G. Since mid of 2020, dynamic spectrum sharing (DSS) has been increasingly used to enable parallel operation of 4G and 5G in one and the same frequency band. There is an increasing need of information with regard to a possible change in exposure associated with DSS. Therefore, investigations were carried out to study the exposure across the 2100 MHz band in scenarios with and without DSS. Overall, the maximum exposure has not changed due to 4G/5G DSS. The instantaneous exposure has remained comparable or even slightly decreased compared to the previous status.

FS-17 [14:55] STUDENT PAPER

Computational analysis for non-invasive acquisition of craniospinal compliance

Fariba Karimi^{1, 2}, Esra Neufeld^{1, 2}, Arya Fallahi^{1, 2}, Andreas Spiegelberg³, Andrea Boraschi³, Vartan Kurtcuoglu³ & Niels Kuster^{1, 2}

¹Foundation for Research on Information Technologies in Society (IT'IS), Zurich, Switzerland

²Department of Information Technology and Electrical Engineering, Swiss Federal Institute of Technology (ETH Zurich), Zurich, Switzerland

³The Interface Group, Institute of Physiology, University of Zurich, Zurich, Switzerland **Keywords: Clinical (diagnostics), Static, Work in Progress Presented by: Fariba Karimi**

Diagnosis, treatment, and monitoring of patients suffering from craniospinal diseases requires the measurement of intracranial pressure (ICP). Several measurement methods have been developed, but currently only invasive techniques are sufficiently reliable to be clinically accepted. As brain geometry and dielectric properties are transiently modulated by blood and cerebrospinal fluid exchange between cranial and spinal compartments, impedance measurements may be used to monitor ICP non-invasively. In this paper, we present a numerically robust and computationally efficient method for simulating pulsation-related impedance changes of the head. The approach was verified in (semi-)analytic benchmarks and applied to real data from volunteers.

Session: PS Poster Session Monday September 27, 2021 • 15:00 - 16:30 Flex Meet

PS-1 [15:00]

Exposure assessment of extremely low frequency magnetic fields in residential buildings within a South African urban area

France Raphela¹

¹Department of Clinical Sciences, Central University of Technology, Free State, Bloemfontein, South Africa, 9300

Keywords: Dosimetry (measurements), ELF/LF, Completed (unpublished) Presented by: France Raphela

A study was conducted to determine the indoor and outdoor exposure levels of ELF magnetic fields in a community living in an urban area of South Africa. The mean values of exposure levels from different sources of ELF magnetic fields were calculated and the mean indoor magnetic field exposure level was 0.62 μ T with the highest peak exposure level of 1.5 μ T.

PS-2 [15:00]

Stochastic dosimetry for the assessment of human exposure to a 3D beamforming antenna in 5G indoor scenarios

Marta Bonato^{1, 2}, Laura Dossi¹, Emma Chiaramello¹, Martina Benini^{1, 2}, Silvia Gallucci^{1, 2}, Serena Fiocchi¹, Gabriella Tognola¹ & Marta Parazzini¹

¹Institute of Electronics, Computer and Telecommunication Engineering (IEIIT), National Research Council (CNR), Milan, Italy, 20133

²Dipartimento di Elettronica, Informazione e Bioingegneria (DEIB), Politecnico di Milano, Milan, Italy, 20133 Keywords: Dosimetry (computational), RF/Microwaves, Completed (published) Presented by: Marta Bonato

The present work was performed to expand the knowledge on human RF-EMF exposure, considering the increase in variability and heterogeneity in realistic scenarios, due to the deployment of 5thgeneration networks. The focus was on a specific case of indoor scenario, where the presence of a 5G Access Point with 3D beamforming capability was simulated. The exposure levels, expressed in terms of specific absorption rate, were evaluated for a child model, coupling the traditional deterministic method with an innovative stochastic approach, called Polynomial Chaos Kriging. The results showed low exposure values compared to ICNIRP guidelines and highlighted a high exposure scenario variability, depending on the beamforming patterns of the 5G AP.

PS-3 [15:00]

Dosimetry of an intra-neural electrode for vagus nerve stimulation in electroceutical-based applications

Matteo del Brocco¹, Martina Failla², Vittoria Flamini³, Guglielmo d'Inzeo⁴, Silvia Bossi² & Caterina Merla¹ ¹Department of Sustainability, Italian National Agency for Energy and New Technologies , Rome, Italy, 00123

²Department of Energetic Technologies and Renewable Sources, Italian National Agency for Energy and New Technologies , Rome, Italy, 00123

³Tandon School of Engineering, New York University, New York, USA

⁴Department of Information Engineering, Electronics and Telecommunications, Sapienza University of Rome, Rome, Italy, 00184

Keywords: Dosimetry (computational), IF, Work in Progress Presented by: Caterina Merla

In this work the design and the dosimetry of an intra-neural electrode for vagus nerve stimulation have been carried out. The assessment of the induced electric field and current densities are required to establish minimal stimulating currents to proceed with in vivo experiments and to evaluate the nerve stimulation selectivity. Our dosimetry is a preliminary setting to move towards in vivo experiments with a controlled and optimized levels of stimulating signals. It provides information concerning the electrodes selectivity and the more suitable electrode configuration to achieve such a goal.

PS-4 [15:00] STUDENT PAPER

Use of a detailed anatomical model in electrochemotherapy applied to spinal metastasis

Federico Rossano¹, Micol Colella¹, Alessandra Paffi¹, Roberta Fusco², Francesca Apollonio¹, Matteo Cadossi² & Micaela Liberti¹

¹Department of Information Engineering, Electronics and Telecommunications (DIET), University of Rome "La Sapienza", Rome, Italy, 00184

²IGEA Biophysics Laboratory, Carpi, Italy, 41012 Keywords: Electroporation, Pulsed, Work in Progress Presented by: Federico Rossano

Electrochemotherapy (ECT) combines the principle of electroporation with chemotherapy drug in order to treat localized tumors by using a single administration of the chemotherapeutic drug. This study proposes the numerical evaluation of the treatment of a spinal metastasis in the T12 vertebra in a detailed anatomical model (Duke), using four needle electrodes inserted within the tumor, through the vertebra pedicles, as performed in spinal surgery.

PS-5 [15:00] STUDENT PAPER

Basic study on non-thermal effects in electro-sterilization using 500kHz burst current for *Streptococcus mutans*

Futa Okido¹, Masatake Akutagawa¹, Hiromichi Yumoto², Takahiro Emoto¹, Hiroo Tarao³, Toshihiko Tominaga⁴, Kouji Hirao², Toshitaka Ikehara⁵, Emiko Yasuno⁶ & Yohsuke Kinouchi¹ ¹electrical and Electronic Engineering, Tokushima, Japan, 770-8506 ²Periodontology and Endodontology, Tokushima, Japan, 770-0042 ³Electrical & Computer Eng., Takamatsu, Japan, 761-8058 ⁴Tominaga Dental Clinic, Naruto, Japan, 771-0360 ⁵Institute for Health Sciences, Tokushima, Japan, 770-8514 ⁶Department of Creative Technology, Anan, Japan, 774-0017 Keywords: In vitro, IF, Work in Progress Presented by: Futa Okido

The major current treatment of the apical periodontitis had been cleaning of the root canal with chemicals and specialized equipment. Recently electro-magnetic apical treatment called EMAT have been proposed. However, optimal conditions and sterilization mechanisms in treatment have not been clarified sufficiently. In this study, comparative experiment was carried out by both heat sterilization(hs) and electro-sterilization(es) to examine non-thermal effect by electro-sterilization. As results of experiments, it was not observed that

electro-magnetic stimulation promote sterilization effect by non-thermal effect.

PS-6 [15:00]

Effects of moderate intensity magnetic field and magnetic force on the proliferation of bone cells

Sachiko Yamaguchi-Sekino¹ & Masaki Sekino²

¹National Institute of Occupational Safety and Health, Japan, Kawasaki, Japan, 2148585

²Department of Bioengineering, Graduate School of Engineering, University of Tokyo, Tokyo, Japan, 138656 Keywords: In vitro, Static, Work in Progress

Presented by: Sachiko Yamaguchi-Sekino

The present study focuses on the effects of moderate intensity (34–273 mT) magnetic field and magnetic force on the proliferation of bone cells. A samarium cobalt (SmCo) magnet (Hitachi Metals Ltd., Japan) was placed inside a non-magnetized CO_2 incubator. The exposure level of static magnetic field on the 96 well

plate was 34–273 mT (Average: 177 \pm 82 mT) and the magnetic force was 0.06–4.14 T²/m (Average: 1.84 \pm 1.28 T²/m). Exposure to moderate SMF intensity promotes the proliferation of the MC3T3 cells although correlation between exposure parameters has not been observed.

PS-7 [15:00]

Characterization of exposure scenarios generated in novel and emerging vehicle technologies

Gabriella Tognola¹, Barbara Masini¹, Marta Bonato¹, Emma Chiaramello¹, Silvia Gallucci¹, Serena Fiocchi¹,

Marta Parazzini¹ & Paolo Ravazzani¹

¹IEIIT - Institute of Electronics, Information Engineering and Telecommunications, CNR - Italian National Research Council, Sites of Milan and Bologna, Italy, 20133

Keywords: Dosimetry (computational), RF/Microwaves, Review, Commentary, Recommendation, Evaluation

Presented by: Gabriella Tognola

The paper extensively reviews all the existing and forthcoming exposure scenarios generated by radiofrequencies (RF) used by the novel technologies in smart vehicular applications, driving assistance systems, and intelligent transport system, including IoT devices for monitoring road infrastructures and the novel application of 5G in autonomous vehicles. For each scenario, we provide a quantitative description and comparison of the features relevant to the exposure of people inside and outside the car, including a description of the current standards/recommendations on radiated fields set by the manufacturers of such technologies. We also review the outcomes of current researches on the assessment of the dose of exposure in such scenarios.

PS-8 [15:00]

Empirical studies on the link between environmental extremely low frequency magnetic fields and Alzheimer's disease

Anu J. Liimatainen^{1, 2}, Kajal Kumari¹, Henna Sarja¹, Muhammad Waseem Khan¹, Päivi Roivainen^{1, 3}, Sarka Lehtonen^{4, 5}, Jari Koistinaho^{4, 5}, Anne Höytö² & Jonne Naarala¹

- ¹Department of Environmental and Biological Sciences, University of Eastern Finland, Kuopio, Finland, 70211
- ²Radiation Practices Regulation, Radiation and Nuclear Safety Authority, Helsinki, Finland, 00880
- ³Environmental Radiation Surveillance, Radiation and Nuclear Safety Authority, Helsinki, Finland, 00880
- ⁴A.I.Virtanen Institute for Molecular Sciences, University of Eastern Finland, Kuopio, Finland, 70211

⁵Neuroscience Center, University of Helsinki, Helsinki, Finland, 00014

Keywords: In vitro, ELF/LF, Work in Progress Presented by: Anu J Liimatainen

In this project, we will assess possible causality of the link between Alzheimer's disease (AD) and environmental extremely low frequency magnetic fields (ELF MF). In addition, we will study whether residential ELF MF exposure increases the incidence of AD. This study consists of in vitro, in vivo and epidemiological approaches.

PS-9 [15:00] STUDENT PAPER

Effect of gyrus folding angle on peak electric field in cerebral cortex

Lorette Quéguiner¹, Gabriel Gaugain¹, Julien Modolo² & Denys Nikolayev¹

¹IETR (Institut d'Électronique et des Technologies du numéRique) UMR 6164, CNRS, Rennes, France, 35000

²LTSI (Laboratoire de Traitement du Signal et de l'Image) U1099, INSERM, Rennes, France, 35000 Keywords: Dosimetry (computational), All Frequencies, Completed (unpublished) Presented by: Lorette Quéguiner

Reported transcranial current stimulation (tCS) effects on cerebral activity leave numerous questions open regarding the involved mechanisms of action. A number of studies have identified clear physiological effects, however it remains to be understood how to take into account interindividual variability to tCS: For example, to what extent does individual brain geometry, such as cerebral tissues morphology, impact this prediction? Here, we aimed at evaluating how the geometry of cortical tissue surfaces impacts the charge distribution and therefore the electric fields induced by tCS.

PS-10 [15:00]

A measurement procedure for magnetic field exposure assessment in electric vehicles: first results in actual exposure scenarios

Rosanna Pinto¹, Germana Trentadue², Marco Zanni² & Giorgio Martini²

¹Department of Sustainability, ENEA, Rome, Italy, 00123

²European Commission, Joint Research Centre (JRC), Ispra, Italy, 21027 Keywords: Dosimetry (measurements), ELF/LF, Completed (published) Presented by: Rosanna Pinto

Electric vehicles (EV) represent a very particular exposure scenario where the general public and power devices share a common space. In fact, electric motors, battery power converters, cables connecting all these parts and specific equipment generate stray magnetic fields (MF) and in the cables hundreds of amperes can be reached. All the mentioned sources operate in a widespread frequency range, from 0 Hz to some kHz, making the EVs very complex exposure scenarios. In this paper a measurement procedure for MF exposure assessment in electric vehicles is explored and preliminary results of its application on two electric vehicles are shown.

PS-11 [15:00] Young Scientist

Hepatocellular carcinoma-specific AM RF EMF inhibition of tumor proliferation is not mediated by apoptosis

Hugo Jimenez^{1, 2}, Callum Mcgrath^{1, 2}, Preeya Achari^{1, 2}, Alexandre Barbault³, Carl Blackman^{1, 2} & Boris Pasche^{1, 2}

¹Department of Cancer Biology, Wake Forest Baptist Medical Center, Winston-Salem, North Carolina, USA, 27157

²Comprehensive Cancer Center, Wake Forest Baptist Medical Center, Winston-Salem, North Carolina, USA, 27157

³TheraBionic GmbH, Ettlingen, Germany Keywords: In vitro, RF/Microwaves, Work in Progress Presented by: Hugo Jimenez

We have shown that 27.12 MHz amplitude modulated (AM) electromagnetic fields (EMF) inhibit proliferation of tumor growth in patients, in tumor xenografts, and in cancer cell lines. Here we tested the hypothesis that HCC-specific AM RF EMF contributes to tumor cell growth inhibition by altering the cell cycle to hinder proliferation in a apoptosis-free manner.

PS-12 [15:00]

The effect of exposure to radiofrequency electromagnetic fields on cognitive function in human experimental studies: a protocol for a systematic review

Blanka Pophof¹, Jacob Burns², Heidi Danker-Hopfe³, Hans Dorn³, Torsten Eggert³, Bernd

Henschenmacher¹, Kateryna Fuks¹, Jens Kuhne¹, Cornelia Sauter³ & Gernot Schmid⁴

¹Department effects and risks of ionizing and non-ionizing radiation, Federal Office for Radiation Protection, Oberschleißheim, Germany, 85764

²Institute for Medical Information Processing, Biometry and Epidemiology (IBE), Ludwig Maximillians University, Munich, Germany, 81377

³Competence Center for Sleep Medicine, Charité - Universitätsmedizin Berlin, Berlin, Germany, 12200

⁴Business Unit EMC & Optic, Seibersdorf Laboratories, Seibersdorf, Austria, A-2444 **Keywords: Human, RF/Microwaves, Work in Progress Presented by: Blanka Pophof**

The main objective of this systematic review is to evaluate the associations between the exposure to RF-EMF and cognitive function in human experimental studies.

PS-13 [15:00]

Unipolar and bipolar aerosol charging as time continuous Markov processes

Andreas Deser¹ & Jens Kuhne¹

¹Effects and risks of ionizing and nonionizing radiation, Federal Office for Radiation Protection, Oberschleissheim, Germany, 85764

Keywords: Mechanistic/Theoretical, Static, Completed (unpublished) Presented by: Andreas Deser

Motivated by the emission of charged particles in the vicinity of high voltage transmission lines (corona ions) and potential health effects, an alternative stochastic approach to model aerosol charging is presented. We review aerosol charging using the conceptually and computationally clear language of continuous time Markov processes. A novel numeric approach is presented that can be used to calculate the time evolution of various particle charging processes. Its modular character makes it easy to implement and allows for quick adaptation to specific problems. We conclude with applications of ergodicity and the generalization to time dependent ion concentrations for bipolar and unipolar charging, respectively.

PS-14 [15:00]

Effects of reactive oxygen species induced by single wavelength LED light irradiation on cultured RAW 264.7 and HeLa S3 cells

Toshitaka Ikehara¹, Mutsumi Aihara², Takahiro Emoto², Masatake Akutagawa², Koichiro Tsuchiya³, Akira Takahashi³ & Yohsuke Kinouchi²

¹Tokushima bunri University, Kashiba, Japan, 639-0223

²Institute of Science and Technology, Tokushima University Graduate School, Tokushima, Japan, 770-8506
³Institute of Biomedical Sciences, Tokushima University Graduate School, Tokushima, Japan, 770-8504
Keywords: In vitro, Optical, Completed (unpublished)
Presented by: Toshitaka Ikehara

We tested effects of UVA light irradiation on cultured RAW and HeLa cells. The irradiation for at least 3 hr did not affect the cell viability, but reactive oxygen species (ROS) induced in the cells was increased by the irradiation. Also, a decrease in intracellular glutathione (GSH) by addition of GSH synthetic inhibitor strongly induced the increase in intracellular ROS and lactate dehydrogenase activity in the medium compared to normal cells. The addition of histidine suppressed much of these increase in intracellular ROS. These results suggest that the intracellular GSH plays to protect cells as a physiological scavenger of intracellular ROS induced by the light irradiation.

PS-15 [15:00]

Personal exposure to RF-EMF prior to the deployment of the 5th generation of mobile telephony: map of a whole city

Sergio Martin-Castillo¹, Jesus Gonzalez-Rubio¹, Pablo Luis² & Alberto Nájera¹

¹Medical Sciences, University of Castilla-La Mancha, Albacete, Spain, 02008

²Signal Theory and Communications, University of Alcalá de Henares, Alcalá de Henares, Spain, 28801 Keywords: Dosimetry (measurements), RF/Microwaves, Completed (unpublished) Presented by: Alberto Nájera

In this work we present a whole urban area personal exposure to radiofrequency electromagnetic fields map of the city of Albacete (Spain) prior to the deployment of the 5th generation of mobile telephony. For this, an MVG Spy Evo personal exposure meter was used and 4 downlink frequency bands (DL) corresponding to previous generations (B20BL, B8DL, B3DL, B1B10DL) as well as the FM band were measured in 301 different locations. An exhaustive statistical analysis was carried out by location, frequency band, neighborhood and by carrying out krigging maps. The mean, median, 95th percentile and maximum values are presented for all neighborhoods and values for the entire city. In all cases, the exposure values were well below the ICNIRP limits.

PS-16 [15:00]

Personal exposure to radiofrequency electromagnetic fields in operating rooms during surgical operations

Ramon Peyro¹, Manuel Geronimo Pardo², Jesus Gonzalez-Rubio¹ & Alberto Nájera¹

¹Medical Sciences, University of Castilla-La Mancha, Albacete, Spain, 02009

²Surgical Anesthesiology and Resuscitation Service, University Hospital Complex of Albacete, Albacete, Spain, 02009

Keywords: Dosimetry (measurements), RF/Microwaves, Completed (unpublished) Presented by: Alberto Nájera

Personal RF-EMF exposure was measured during 18 surgical operations at the Complejo Hospitalario

Universitario de Albacete (Spain) using personal exposimeters. A description of personal exposure is provided in temporary and spatial terms. Levels of personal exposure were extremely low compared to regulatory limits.

PS-17 [15:00]

Influence of 5G UEs on frequency-selective exposure measurements on 5G massive-MIMO base stations

Anna-Malin Schiffarth¹, Thomas Kopacz¹, Sascha Schiessl¹ & Dirk Heberling^{1, 2} ¹Institute of High Frequency Technology, RWTH Aachen University, Aachen, Germany ²Fraunhofer Institute for High Frequency Physics and Radar Techniques, Wachtberg, Germany Keywords: Dosimetry (measurements), RF/Microwaves, Work in Progress Presented by: Anna-Malin Schiffarth

This work addresses the influence of a user equipment (UE) on exposure measurements at 5G NR base stations at full load. Based on measurements at five locations at a Huawei and an Ericsson base station, it is shown that a larger distance between the UE and an isotropic measurement probe leads to an elimination of the UE influence, but can also cause a changed exposition situation at the measurement point. Comparative measurements using directive antennas indicate that no influence of the UE occurs when using those. However, multipath propagation effects are not considered in this case due to the antenna's beamwidth and, thus, the total exposure at the measurement point can not be evaluated.

PS-18 [15:00]

The effect of radiofrequency electromagnetic fields (RF-EMF) on biomarkers of oxidative stress in vivo and in vitro: a protocol for a systematic review

Bernd Henschenmacher¹, Annette Bitsch², Tonia de las Heras Gala¹, Henry J. Forman³, Athanassios Fragoulis⁴, Pietro Ghezzi⁵, Rupert Kellner ², Wolfgang Koch², Jens Kuhne¹, Dmitrij Sachno², Gernot Schmid⁶, Katya Tsaioun⁷, Jos Verbeek⁸ & Rob Wright⁹

¹Department "Effects and risks of ionizing and nonionizing radiation", Federal Office for Radiation Protection, Oberschleißheim, Germany, 85764

² Fraunhofer Institute for Toxicology and Experimental Medicine, Chemical Safety and Toxicology, Hannover, Germany, 30625

³Leonard Davis School of Gerontology, University of Southern California, Los Angeles, CA, USA, 90089

⁴Department of Anatomy and Cell Biology, Uniklinik RWTH Aachen, Aachen, Germany, 52074

⁵Brighton and Sussex Medical School, University of Sussex, Trafford Centre, Falmer, United Kingdom, BN1 9RY

⁶Seibersdorf Laboratories, Campus Seibersdorf, Falmer, Austria

⁷ Evidence-based Toxicology Collaboration (EBTC), John Hopkins Bloomberg School of Public Health, Baltimore, Maryland, USA, 21205

⁸University Medical Center Amsterdam, Cochrane Work, Amsterdam, the Netherlands, 1105

⁹William H. Welch Medical Library, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA, 21205

Keywords: In vitro, RF/Microwaves, Review, Commentary, Recommendation, Evaluation Presented by: Bernd Henschenmacher

Background: Oxidative stress is conjectured to be related to many diseases, and there is the hypothesis that radiofrequency fields may induce oxidative stress in various cell types and thereby compromise human and animal health. This systematic review (SR) aims to summarize and evaluate the literature in this field. Objectives: The main objective of this SR is to evaluate the associations between the exposure to

radiofrequency electromagnetic fields and oxidative stress in experimental models (in vivo and in vitro).

PS-19 [15:00]

The intense electric field acts by torque on tubulin dipoles and opens up microtubule lattice

Jiří Průša¹, Ahmed T. Ayoub², Djamel E. Chafai^{1, 3}, Daniel Havelka¹ & Michal Cifra¹

¹Bioelectrodynamics, Institute of Photonics and Electronics of the Czech Academy of Sciences, Prague, Czech Republic, 18251

²Biomolecular Simulation Center, Department of Pharmaceutical Chemistry, Heliopolis University, Cairo, Egypt, 11777

³Institute of Physiology of the Czech Academy of Sciences, Prague, Czech Republic, 14220 Keywords: Mechanistic/Theoretical, Pulsed, Completed (published) Presented by: Michal Cifra

Microtubules (MTs) are natural protein polymer nanotube structures essential in many fundamental cell functions. Since building blocks of MTs (tubulin proteins) have exceptional electric properties, a pertinent question is how can an external electric field affect MTs structure. To address this question, we carried out an all-atom molecular dynamics simulation of a MT ring in an intense electric field. We found that a nanosecond-scale electric field acts by a torque action on tubulin dipoles which propagates to the weakest point of the MT lattice leading to its opening. We propose that intense electric field might be a tool for modification of MT lattice structure.

PS-20 [15:00]

Risk assessment of contact currents due to electric accidents during welding

Pia Schneeweiss¹, Pascal Oesterreich^{2, 3}, Michael Kubocz¹, Rahul Sharma^{2, 3}, Kai Jagielski¹ & Thomas Kraus¹

¹Research Center for Bioelectromagnetic Interaction (femu), Uniklinik RWTH Aachen University, Aachen, Germany, 52074

²FEF Forschungs- und Entwicklungsgesellschaft Fuegetechnik, Aachen, Germany, 52062

³Welding and Joining Institute (ISF), RWTH Aachen University, Aachen, Germany, 52062

Keywords: Occupational, Pulsed, Work in Progress

Presented by: Pia Schneeweiss

Electrical accidents are a daily hazard for workers in the electrical welding industry. For LF touch voltages, the resulting contact currents may trigger nerves or muscles, or even induce life-threatening ventricular fibrillation. Numerical simulations are a profound method to investigate this hazard potential without endangering humans or animals. As a continuation of our previous studies with sinusoidal signals, the here investigated voltages are pulse-shaped. These signals must be decomposed into individual sinusoidal signals with their respective frequencies and phase shifts. After simulations, the individual results for current and induced electric field are recombined to assess the total hazard of the welding power source.

PS-21 [15:00] STUDENT PAPER

Sensitivity study of tumor and tissue properties on electroporation-based treatments in oncology

Prashanth Lakshmi Narasimhan^{1, 2}, Zoi Tokoutsi¹, Davide Baroli³, Marco Baragona¹, Karen Veroy² & Ralph Maessen¹

¹Philips Research, Eindhoven, the Netherlands, 5656 AE

²Centre for Analysis, Scientific computing, and Applications, Eindhoven University of Technology, Eindhoven,

the Netherlands, 5612 AZ

³Aachen Institute for Advanced Study in Computational Engineering Science, RWTH Aachen University, Aachen, Germany, 52062

Keywords: Electroporation, Static, Work in Progress Presented by: Prashanth LakshmiNarasimhan

This work talks about a global sensitivity analysis for Electroporation-based cancer treatments (EBTs). The various treatment parameters (like the relative tumor positions w.r.t electrodes and the tissue properties) in EBT are commonly associated with uncertainties and these can influence the outcome in treatment planning. One approach to screen the significance of the parameters on the treatment outcome is a one-step-at-a-time method called Morris analysis. The results estimate the relative significance of the parameters for different treatment outcomes. This study can be a foundation towards incorporating uncertainties in the treatment planning strategies.

PS-22 [15:00]

EMF exposure evaluation method for underground mobile base stations

Junji Higashiyama¹, Takahiro Iyama¹, Tomoaki Nagaoka² & Takashi Hikage³

¹6G Laboratories, NTT DOCOMO, INC., Yokosuka, Japan, 239-8536

²Electromagnetic Compatibility Laboratory, National Institute of Information and Communications Technology, Koganei, Japan, 184-8795

³Faculty of Information Science and Technology, Hokkaido University, Sapporo, Japan, 060-0814 Keywords: Dosimetry (computational), RF/Microwaves, Completed (unpublished) Presented by: Junji Higashiyama

This paper proposes EMF exposure evaluation method for an underground mobile base station which is installed in underground and forms a service area on the ground. First, a spatial averaging scheme assuming a relatively short person such as a child is proposed considering the feature that the EMF level from the base station becomes stronger as it is closer to the ground. Second, a spherical formula using specific correction coefficient is proposed considering the multiple reflections and transmissions due to the handhole and the underground structure around the antenna. These proposals are based on the calculated results of the EMF distributions around the base stations mainly by the FDTD numerical analysis.

PS-23 [15:00] STUDENT PAPER

Age-dependent SAR assessment based on the accuracy of tissue mass density values

Fatima Alzaabi¹, Yasir Alfadhl¹, Xiaodong Chen¹ & Azadeh Peyman²

¹Antennas & Electromagnetics Research Group, Queen Mary University of London, London, United Kingdom ²Radiation Dosimetry Department, Public Health England, Didcot, Oxfordshire, United Kingdom **Keywords: Dosimetry (computational), RF/Microwaves, Work in Progress Presented by: Fatima Alzaabi**

This paper evaluates potential effects of age-dependent properties related to tissue mass density on SAR values within a child model. Exposure scenariosplane waves at two frequency points of 868 MHz and 2450 MHz were considered to evaluate SAR changes (peak SAR and WBSAR) using the volume tissue average (10 g). Preliminary results show that certain percentage variation in the mass density as a function of age has a direct effect on the calculated SAR and WBSAR figures. Further work involves realistic and accurate evaluation of age-dependant tissue mass densities, along other model dimensions and dielectric properties to increase the confidence in the computed SAR values.

PS-24 [15:00]

WITHDRAWN

PS-25 [15:00]

RISEUP: Regeneration of Injured Spinal cord by Electro pUlsed bio-hybrid imPlant

RISEUP Consortium^{1, 2, 3, 4, 5, 6}

¹*Health Division, ENEA, Rome, Italy, 00123*

²Center for Biomaterials and Tissue Engineering, Polytechnic University Valencia, Rome, Spain, 46022 ³RISE TECHNOLOGY , RISE TECHNOLOGY SRL, Ostia (RM), Italy, 00121

⁴Department of Information Engineering, Electronics and Telecommunications (DIET), University Sapienza, Rome, Italy, 00184

⁵Metabolic and Systemic aspects of the oncogenesis (METSY), CNRS 9018, Villejuif, France, 94800

⁶Neuronal and Tissue Regeneration Laboratory, Centro de Investigación Príncipe Felipe, Valencis, Spain, 46012

Keywords: Clinical (therapy), ELF/LF, Work in Progress Presented by: RISEUP Consortium

RISEUP is a project recently funded by a FET call in H2020. This project provides a highly innovative method for the treatment of spinal cord injuries through the combination of stem cells and stimulations with micro-pulses and direct current.

PS-26 [15:00] STUDENT PAPER

Design of a low-cost modular 5G RF-EMF exposure sensor

Kenneth Deprez¹, Sam Aerts¹, Arno Thielens¹, Gunter Vermeeren¹, Luc Martens¹ & Wout Joseph¹

¹Department of Information Technology, Ghent University/IMEC, Ghent, Belgium, 9052 Keywords: Dosimetry (measurements), RF/Microwaves, Work in Progress Presented by: Kenneth Deprez

Spatio-temporal radiofrequency (RF) electromagnetic field (EMF) exposure assessment is currently of great interest as concerns about RF-EMF exposure of the public and governmental bodies arise. To perform long-term spatio-temporal EMF exposure assessment in current and future telecommunications networks, low-cost RF-EMF exposure sensors have been designed to measure up to four frequency bands, which are determined based on the project and/or environment specifications, that are used by current telecom technologies (2G up to 4G) and in the upcoming 5G New Radio (NR) networks. Sufficiently high sampling rates for the targeted application are feasible and thus highly detailed temporal exposure assessment over a long period is possible.

PS-27 [15:00]

MWI-GAN: Generative Adversarial Networks for microwave imaging

Haoyu Jiang¹, Congsheng Li¹ & Tongning Wu¹

¹China Academy of Information and Telecommunications Technology, Beijing, China, 100191 Keywords: Dosimetry (measurements), RF/Microwaves, Work in Progress Presented by: Haoyu Jiang

We optimized the microwave imaging technology by Generative Adversarial Networks (GAN). MWI-GAN was a faster and more efficient method than traditional iterative methods, which reduced the time consumption of

microwave imaging of biological tissues such as breasts. This method also improved the accuracy compared to traditional learning algorithms.

PS-28 [15:00]

Development of a drone-based measurement system for assessing exposure to radiofrequency electromagnetic fields

Serafeim Iakovidis¹, Alexandros Vafeiadis-Sinoglou¹, Christos Apostolidis¹, Athanasios Manassas¹ & Theodoros Samaras¹

¹CIRI - Center for Interdisciplinary Research and Innovation, Aristotle University of Thessaloniki, Thermi, Greece, 57001

Keywords: Dosimetry (measurements), RF/Microwaves, Work in Progress Presented by: Theodoros Samaras

Exposure to radiofrequency electromagnetic fields changes with height, due to the physical mechanisms of wave propagation, especially in urban environments with tall buildings. Most of the measurement campaigns performed for compliance with exposure guidelines are performed outdoors and at ground level. As a consequence, it is difficult to correlate measurement results with the actual exposure of city inhabitants, who spend most of their time indoors and, quite often, live or work on the upper floors of buildings. In this work we demonstrate the construction of a drone-based measurement system with excellent positional accuracy that can be used to characterize the electromagnetic environment at different heights above the ground.

PS-29 [15:00]

In vitro and in silico investigations on glioma cells motility using a non-contact DC field

Laura Caramazza^{1, 2}, Nicolò Lauciello¹, Annalisa De Angelis², Daniel Remondini³, Gastone Castellani⁴,

Micaela Liberti^{1, 2}, Francesca Apollonio^{1, 2} & Isabella Zironi³

¹DIET@Sapienza University of Rome, 00184, Rome, Italy, Sapienza University of Rome, Rome, Italy, 00184 ²Center for Life Nano- & Neuro-Science, Fondazione Istituto Italiano di Tecnologia (IIT), Rome, Italy, 00161

³DIFA@University of Bologna, University of Bologna, Bologna, Italy, 40126

⁴DIMES@University of Bologna, University of Bologna, Bologna, Italy, 40126

Keywords: In vitro, Static, Work in Progress

Presented by: Laura Caramazza

Galvanotactic study as a way to remotely guide cell motility has recently great gain attention. In this framework, "non-contact" galvanotaxis investigations could represent a powerful tool to study migration in brain tumor cells for brain cancer therapy applications. In this work authors provide in vitro experimental studies on the effect of "non-contact" direct currents (DC) electric field application to glioblastoma cell line in terms of cells migration. Multiphysics in silico investigations are performed in order to quantify the electromagnetic quantities involved during the in vitro exposures, hence providing a numerical support to the experiment.

PS-30 [15:00]

Genotoxicity assessment of combined exposure to WiFi and UV radiation on human keratinocytes *in vitro*

Zsófia Szilágyi¹, Györgyi Kubinyi¹, Erika Szabó¹, Bertalan Pintér¹, Brahim Selmaoui² & György Thuroczy¹ ¹National Public Health Center, Non-ionizing Radiation Unit, Budapest, Hungary, 1221

²L'Institut National de l'Environnement Industriel et des Risques, Verneuil en Halate, France **Keywords: In vitro, RF/Microwaves, Completed (unpublished)**

Presented by: Zsofia Szilagyi

In the last decades the exposure to radiofrequency (RF) radiation emitted by wireless devices has increased in the human environment, whereupon has raised concerns about health effects. The International Agency for Research on Cancer classifies RF radiation as "possible carcinogenic" (Group 2B), and the ultraviolet (UV) radiation as "carcinogenic" (Group 1) respectively. We tested whether consecutive exposures of UV radiation and 2422 MHz WiFi field have any effect on human keratinocytes. Genetic toxicity was examined during in vitro experiments. We found no conclusive and coherent evidence for an induction of DNA damages, but in some cases we reported some positive results of the adverse effect of WiFi irradiation.

PS-31 [15:00]

Acceptability of a provocation protocol in the study of electrohypersensitivity : Results of the ExpoComm project

Maryse Ledent^{1, 2}, Maël Dieudonné³, Jimmy Bordarie⁴, Eva De Clercq¹ & Catherine Bouland²

¹Risk and Health Impact Assessment, Sciensano, Brussels, Belgium, 1050

²Ecole de Santé Publique, Université Libre de Bruxelles, Brussels, Belgium, 1070

³Dynamiques sociales et politiques de la vie privée, Centre Max Weber, Lyon2, Lyon, France, 69363

⁴Qualité de vie et Santé psychologique, Université de Tours, Tours, France, 37082

Keywords: Human, All Frequencies, Completed (unpublished) Presented by: Maryse Ledent

For most electrohypersensitive (EHS) people, experimentation remains the preferred instrument to determine the role of electromagnetic fields and to verify the accuracy of the attributions. Despite the fear of some of them to undergo laboratory exposure, most EHS people are convinced of the usefulness of provocation tests, but request innovative protocols that consider the specificity of their condition. The aim of the ExpoComm project was to co-design with EHS people a protocol considering the characteristics of their sensitivity and to evaluate the acceptability of this protocol. In this study we present the evolution of the acceptability and provide guidelines for recruiting and including volunteers in such protocol.

PS-32 [15:00]

Electro-gene transfer as a therapeutic approach for glycogen storage disease type III (GSDIII)

Doriana Triggiani^{1, 2}, Emanuela Pasquali¹, Emanuela Signori³, Simona Salati⁴, Carmela Marino¹, Caterina Merla¹ & Rosella Franconi¹

¹Department of Sustainability, ENEA, Rome, Italy, 00123

²Italian Glycogen Storage Disease Association (AIG) NPO, Assago, Italy, 20090

³Laboratory of Molecular Pathology and Experimental Oncology, CNR - Institute of Translational Pharmacology, Rome, Italy, 00133

⁴Clinical Biophysics, IGEA SpA, Carpi, Italy, 41012 **Keywords: Clinical (therapy), Pulsed, Work in Progress Presented by: Caterina Merla**

Glycogen storage disease type III (GSDIII) is a rare genetic disease due to deficiency of the glycogen debranching enzyme (GDE). GSDIII is characterized by progressive accumulation of abnormal glycogen in the liver and skeletal muscle. Adult GSDIII patients usually develop a kind of muscular dystrophy. At present, no specific therapy exists while adeno-associated virus (AAV) -based gene therapy strategies are being used in GSDIII animal models. Our approach is to explore electro-gene transfer (EGT) of a plasmid vector containing a synthetic gene encoding a functional GDE as a possible approach of local gene therapy in the affected skeletal muscles.

PS-33 [15:00] STUDENT PAPER

Challenges in four-electrode probe measurement – Data acquisition system and probe hardware for low frequency dielectric spectroscopy

Cindy Karina¹, Nishtha Chopra², Myles Capstick¹, Azadeh Peyman², Sina Hashemizadeh¹ & Niels Kuster^{1, 3}

¹IT'IS Foundation, Zürich, Switzerland

²Radiation Dosimetry, Public Health England, London, United Kingdom

³Departments of Information Technology and Electrical Engineering, ETH Zürich, Zürich, Switzerland **Keywords: Electrochemistry, ELF/LF, Work in Progress Presented by: Cindy Karina**

This paper presents experimental evaluation of dielectric properties using a four-electrode probe and a commercial impedance analyser in measuring high loss samples at frequencies < 1MHz. The study also attempts to overcome the electrode polarisation effect using equivalent circuit modelling. Finally, feasibility of a probe with embedded electronic circuits is studied as an approach to eliminate the need for commercial impedance analysers and to minimize stray capacitance and electrode polarization effects at extremely low frequencies.

PS-34 [15:00]

Wearable antenna: human exposure assessment in different configurations

Silvia Gallucci^{1, 2}, Marta Bonato¹, Martina Benini^{1, 2}, Serena Fiocchi¹, Emma Chiaramello¹, Gabriella Tognola¹, Paolo Ravazzani¹ & Marta Parazzini¹

¹*IEIIT - Institute of Electronics, Information Engineering and Telecommunications, CNR - Italian National Research Council, Milan, Italy, 20133*

²Department of Electronics, Information and Bioengineering (DEIB), Politecnico di Milano, Milan, Italy, 20133 Keywords: Dosimetry (computational), RF/Microwaves, Other Presented by: Silvia Gallucci This work aims to assess the human exposure to the RF-EMFs emitted by a wearable antenna since, in recent year, we have been witnessing a growth of this technology due to its wide variety of fields of application, e.g., medical, military. An exposure assessment is needed because the antenna is placed on the human wearer. A wearable antenna (f = 1.575 GHz) was tested by placing it in four realistic configurations relative to the human model. The assessment was performed by means of computational methods to estimate the SAR_{10g}@ 1 W. The obtained values have shown that the configuration with the highest value is the case of the shoulder and, differentiating the tissues, the most affected tissue among all configurations is the skin.

PS-35 [15:00]

Numerical investigation of TMS exposure of a rat brain

Micol Colella¹, Daniele Lelli¹, Alessandra Paffi¹, Giuseppina Natale², Filippo Carducci³, Francesca Apollonio¹, Veronica Ghiglieri⁴ & Micaela Liberti¹

¹Department of Information Engineering, Electronics and Telecommunications, University of Rome La Sapienza, Rome, Italy, 00184

²Università degli Studi di Perugia, Perugia, Italy

³Laboratorio di Neuroimmagini, University of Rome La Sapienza, Rome, Italy

⁴Università telematica San Raffaele, Rome, Italy

Keywords: Dosimetry (computational), Pulsed, Completed (unpublished) Presented by: Micol Colella

In this work preliminary results of the numerical dosimetric study performed on the experiments conducted in the experimental work by Cacace and co-workers in 2017 are presented. The aim is to show the importance of an accurate dosimetry to support translational studies on small animals and to help indentify the physiological mechanisms that underlies the therapeutic abilities of rTMS exposure.

PS-36 [15:00]

Measuring principle of code-selective measurements at 5G

Holger Schwarz¹, Stephan Sommersdorf¹ & Sabine Duerr¹

¹Narda Safety Test Solutions GmbH, Pfullingen, Germany, 72793 Keywords: Dosimetry (measurements), RF/Microwaves, Completed (published) Presented by: Holger Schwarz

With a spectrum analyzer, selective measurements can be performed and different services can be distinguished from each other. 5G signals in general can also be measured. If a certain 5G signal source should be measured, a code-selective measurement is required. This is also the basis for an extrapolation to the maximum load. Often regulators require extrapolation to the maximum load and comparison of this result with the local standard. This ensures that the exposure will not exceed the permitted limits and make the result independent from day and time when the measurement was taken.

PS-37 [15:00]

A tri-band MIMO antenna for mobile phones and its SAR analysis

Niamat Hussain¹, Hussain Askari¹, Domin Choi¹, Hyung-Do Choi² & Nam Kim¹

¹ Information and Communication Engineering, Chungbuk National University, Cheongju, Korea, 28609 ² Radio Technology Research Department, Electronics and Telecommunications Research Institute, Daejeon, Korea

Keywords: In vitro, RF/Microwaves, Work in Progress Presented by: Niamat Hussain

The design and its SAR analysis of a tri-band MIMO antenna operating at key bands of 2.45 GHz, 3.5 GHz, and 5.5 GHz has been presented. The antenna is placed at four corners of the substrate to achieve spectral diversity. The SAR_{-10g} is computed for an input power of 0.5 W at various frequency bands. The antenna shows low SAR-_{10g} values of 0.148 W/kg, 0. 97 W/kg, and 1.15 W/kg at 2.45 GHz, 3.5 GHz, and 5.5 GHz, respectively and can be a good candidate for 5G cellular phones.

PS-38 [15:00] STUDENT PAPER

Study protocol to continuously monitor extremely low-frequency and radiofrequency electromagnetic fields exposure in Switzerland: the SwissNIS project

Nicolas Loizeau^{1, 2}, Marco Zahner^{3, 4}, Jürg Fröhlich^{3, 4}, Erik Bühlmann⁵, Christa Stephan⁵, Markus Gugler⁶, Marloes Eeftens^{1, 2}, Stefan Dongus^{1, 2}, Alexander Reichenbach⁷, Sebastian Egger⁷, Toni Ziegler⁵ & Martin Röösli^{1, 2}

¹Department of Epidemiology and Public Health, Swiss Tropical and Public Health Institute, Basel, Switzerland, 4051

²University of Basel, Basel, Switzerland, 4051

³Fields at Work GmbH, Zürich, Switzerland, 8032

⁴Institute of Electromagnetic Fields (IEF), ETH Zürich, Zürich, Switzerland, 8092

⁵Grolimund + Partner AG Environmental Engineering, Bern, Switzerland, 3006

⁶NED-TECH AG, Wangen an der Aare, Switzerland, 3380

⁷ Federal Office for the Environment (FOEN), Swiss Confederation, Bern, Switzerland, 3003 Keywords: Epidemiology, RF/Microwaves, Concept Presented by: Nicolas Loizeau

Exposure to electromagnetic fields (EMF) is continuously changing in our daily environment due to the constant development of technology. The Federal Office for the Environment (FOEN) has commissioned the SwissNIS consortium to assess the extremely low frequency magnetic fields (ELF-MF) and radiofrequency (RF) EMF exposure of the Swiss population in their everyday life from 2021 to 2025. The SwissNIS study protocol describes yearly mobile microenvironmental measurements, home visits and continuous fixed site measurements in Switzerland. Yearly spatial and temporal trends of ELF-MF and RF-EMF exposure will be evaluated during the course of the project.

PS-39 [15:00]

Monitoring the long-term variations of the environmental field strength using exposimeters mounted on a public transport vehicle: A pilot study 2019 - 2021

Marco Zahner¹, Timon Schmid¹, Fabian Schneider¹, Martin Schmid¹, Jürg Studerus² & Jürg Fröhlich¹

¹Fields at Work GmbH, Zurich, Switzerland, 8032

²Corporate Responsibility, Swisscom Schweiz, Worblaufen, Switzerland, 3048 Keywords: Dosimetry (measurements), RF/Microwaves, Work in Progress Presented by: Marco Zahner

A pilot study using exposimeters mounted on the roof of a public transport bus was performed to assess the evolution of the RF electromagnetic fields exposure within a period of two years (2019 and 2021) in the city of St. Gallen (Switzerland). The transferability of the bus rooftop measurements to a height closer to the ground was validated by measurements performed on a bicycle following the same route as the bus. The preliminary

data shows a general decrease of 32% in measured RMS field strength in the cellular downlink bands from 2019 to 2021. Effects such as decreased mobility during the pandemic and other variabilities might be responsible for the observed decrease.

PS-40 [15:00]

ELF-MF exposure and neuronal differentiation: a preliminary study on the effect of chronic exposure on iPSC

Barbara Benassi¹, Laura Rodriguez Doblado¹, Caterina Merla¹, Victoria Moreno-Manzano¹, Manuel

Monleon-Pradas¹, Carmela Marino¹ & Claudia Consales¹

¹Neuronal and Tissue Regeneration Laboratory, Centro de Investigación Príncipe Felipe, Valencia, Spain, 46012

Keywords: In vitro, ELF/LF, Work in Progress Presented by: Claudia Consales

Extremely low frequency magnetic field (ELF-MF) exposure has been reported to induce mesenchymal (MSC) and human embryonic stem cells neuronal differentiation by modulating the levels of intracellular calcium. Here we explored the hypothesis that chronic ELF-MF exposure could sustain the neuronal differentiation of induced pluripotent stem cells (iPSC).

PS-41 [15:00]

ELF magnetic field vector orientation-dependent variations of tissue specific induced electric field strength in rats and mice during animal experiments

Gernot Schmid¹ & Rene Hirtl¹

¹EMC & Optics, Seibersdorf Laboratories, Seibersdorf, Austria, A-2444 Keywords: Dosimetry (computational), ELF/LF, Work in Progress Presented by: Gernot Schmid

Numerical computations with a rat model exposed to ELF magnetic fields with different orientation with respect to the body axis were carried out. The results indicate that a horizontally aligned field vector (as used in most animal studies concerning childhood leukemia) lead to much higher variation of induced electric field strengths (E_i) inside relevant tissues of freely moving animals than a vertically aligned field vector. It is therefore suggested to thoroughly consider also the possibility of using a vertically aligned magnetic field vector in the design of future animal studies in order to minimize uncertainties, and a rationale based on quantitative information for the field orientation finally used shall be given.

PS-42 [15:00]

Research program "Radiation Protection in the Process of Power Grid Expansion"

Janine-Alison Schmidt¹, Christoph Boehmert¹, Dirk Geschwentner¹, Bernd Henschenmacher¹, Jens Kuhne¹, Blanka Pophof¹ & Gunde Ziegelberger¹

¹Competence Centre for Electromagnetic Fields, Federal Office for Radiation Protection, Oberschleißheim, Germany, 85764

Keywords: Public Health Policy, ELF/LF, Work in Progress Presented by: Janine-Alison Schmidt

In connection with energy transition the existing electricity grids in Germany are being expanded and upgraded. In order to improve risk assessment and to reduce scientific uncertainties, the Federal Office for Radiation Protection (BfS) started the accompanying research program "Radiation Protection in the Process of Power Grid Expansion" in 2017. Ten research topic areas including 40 individual research projects are

investigated during the course of the research program.

PS-43 [15:00]

Effects of in vitro exposures to 900MHz electromagnetic fields on neural stem cell integrity and differentiation

Camille Mougin^{1, 2}, Stéphane Mortaud² & Anne-Sophie Villegier¹

¹Unité de Toxicologie Expérimentale, Institut national de l'environnement industriel et des risques, Verneuilen-Halatte, France, 60500

² Immunologie et Neurogénétique Expérimentales et Moléculaires, UMR7355, Orléans, France, 45071 Keywords: In vitro, RF/Microwaves, Completed (unpublished) Presented by: Anne-Sophie Villegier

Because of the important fragility of neural stem cells (NSCs) in response to environmental stressors, the main goal of this study was to assess NSCs integrity and differentiation in response to environmental and high levels radiofrequency electromagnetic fields (RF-EMF, GSM 900-MHz). Our results suggested that RF-EMF may increase double strand DNA break, decrease cell growth and cell viability. RF-EMF modified NSCs differentiation as shown by the increased proliferation of oligodendrocyte progenitor cells and by the reduced number of astrocytes. Therefore, RF-EMF may impact both NSCs integrity and differentiation, which are known mechanisms for cancer and neurodevelopmental impairments.

PS-44 [15:00]

EPRI occupational electric and magnetic field exposure database for the utility industry: Feasibility study

Carolina Calderon¹, Darren Addison¹, Nishtha Chopra¹, Nigel Cridland², Myron Maslanyj¹, Michael Silva³ & Phung Tran³

¹Radiation Dosimetry Department, Pubic Health England, Chilton, United Kingdom, OX11 0RQ

²Operational Protection Department, Pubic Health England, Chilton, United Kingdom, OX11 0RQ

³Electric Power Research Institute, Palo Alto, California , USA, 94304-1338 Keywords: Dosimetry (measurements), ELF/LF, Work in Progress Presented by: Carolina Calderon

The poster presents the results of a study investigating the feasibility of creating an electric and magnetic field exposure database for the electricity industry. The database is intended for use by EMF health and safety professionals as well as industrial hygienists, to support return-to-work practices for workers with active medical devices, amongst other applications. Industry reports, datasets and scientific publications were used to populate a simple and intuitive proof-of-concept database that provides exposure data by job classification, work environment, and EMF source.

PS-45 [15:00]

Network-based measurements of actual output power levels of user equipment in commercial 5G NR networks

Paramananda Joshi¹, Fatemeh Ghasemifard¹, Davide Colombi¹ & Christer Tornevik¹

¹Ericsson Research, Ericsson AB, Stockholm, Sweden Keywords: Dosimetry (measurements), RF/Microwaves, Work in Progress Presented by: Fatemeh Ghasemifard

Summary: In this study, output power levels of user equipment (UE) are assessed by means of network data collected from three commercial 5G NR networks operating at sub-6GHz and millimeter-wave frequencies.

The results, which will be presented at the conference, show that the actual time averaged output power and consequently the radio frequency (RF) electromagnetic field (EMF) exposure levels from 5G UE are significantly lower than the maximum.

PS-46 [15:00] STUDENT PAPER

Model based conception of microelectrodes for High Frequency Oscillations Recording and Detection

Gautier Dauly¹, Gabriel Dieuset¹, Seyedeh-Hajar Mousavi², Esma Ismailova², Pascal Benquet¹, Fabrice Wendling¹ & Mariam Al-harrach¹

¹LTSI U1099, F-35000, INSERM, Rennes, France, 35042

²Bioelectronics, CMP-EMSE, MOC, Gardanne, France, 13541 Keywords: Mechanistic/Theoretical, All Frequencies, Work in Progress Presented by: Gautier Dauly

High Frequency Oscillations (HFO, 40-600 Hz) and particularly Fast Ripples (FR, 200-600 Hz) are short transient events that appear on intracerebral EEG. They are considered as a rieliable biomarker of the Epileptogenic Zone. Microelectrodes used for FRs recording posses a high impedance which leads to attenuation and distortion in the signals. This paper presents a model-guided approach in the conception of microelectrodes optimized for the recording of FRs. In particular, the coating the metal microelectrodes with a conducting polymer such as poly(3,4-ethylenedioxythiophene) polystyrene sulfonate (PEDOT:PSS).

PS-47 [15:00] STUDENT PAPER

The numerical approach for the validation of a risk assessment under low-frequency electric field exposures

Mengxi Zhou¹, Julien Claudel¹, Djilali Kourtiche¹, Isabelle Magne², Martine Souques² & François Deschamps³

¹Département Nanomatériaux, électronique et Vivant, Institut Jean Lamour (UMR 7198), Université de Lorraine - CNRS, Nancy, France, 54000

²Service des Etudes Médicales, EDF, Paris, France, 75017

³Département Concertation et Environnement, RTE, Paris-La Défense, France, 92400 Keywords: Dosimetry (computational), ELF/LF, Work in Progress Presented by: Mengxi Zhou

The risk of the cardiac implant wearers under occupational exposures to the electromagnetic fields has been highlighted by the 2013/35/EU European Directive. We proposed in this study the numerical approach to validate a risk assessment under low-frequency electric field exposures. The human models and the phantom for in vitro experiments were studied by using numerical simulations to determine the relation between induced current density and the external electric field. The exposure system is modeled in order to reproduce induced phenomena on a cardiac implant inside a human body under electric field exposures. The results give references for the future experimental measurements.

PS-48 [15:00]

The effect of intermediate frequency magnetic field at 22 kHz on human fibroblast cells in vitro

Bertalan Pintér¹, Zsófia Szilágyi¹, Erika Szabó¹, Györgyi Kubinyi¹, Yves Le Dréan² & György Thuroczy¹

¹National Public Health Center, Non-ionizing Radiation Unit, Budapest, Hungary, 1221

²Université de Rennes I, l'Environnement et le Travail, Rennes, France

Keywords: In vitro, IF, Work in Progress Presented by: Bertalan Pinter

The aim of this study was to examine whether the intermediate frequency (IF) has any effect on DNA in human fibroblast cells in vitro. Furthermore, the adaptive response was also investigated. The cells were exposed to 22 kHz, 100 microtesla IF radiation (as adaptive dose) and 4 hours later were challenged with 2.5 Gy X-ray ionizing radiation. Evaluation of the DNA damage was performed with Fpg-modified alkaline comet assay.

PS-49 [15:00]

Broadband and band-selective measurements of radiofrequency EM field with drone system around 5G base station

Peter Necz¹, Balázs Gyulai², József Krausz² & György Thuroczy¹ ¹Department of Non-Ionizing Radiation, National Public Health Center, Budapest, Hungary ²National Media and Infocommunications Authority, Budapest, Hungary Keywords: Dosimetry (measurements), RF/Microwaves, Work in Progress Presented by: György Thuroczy

The aim of present study wasto use a drone system to perform RF exposure measurements in the vicinity of 5G base station. Another aim was to check how to use a lightweight personal exposimeter and a spectrum analyzer in the study.Conducting measurements by common, commercially available exposimeters should be useful in the future exposimetry studies, also for measuring 5G base stations. The results show that measured field strength values are strongly depending on the pattern of the base station's beam and the distance. Nevertheless several conditions must be considered in the planning phase and carrying out such studies.

PS-50 [15:00]

Radiofrequency EMF effects on neuroinflammation and microglial activation in an Alzheimer's disease mouse model

Hyejin Park¹, Ye Ji Jeong¹, Nam Kim², Hyung-Do Choi³ & Hae-June Lee¹

¹Korea Institute of Radiological and Medical Sciences, Seoul, Korea, 01812

²Chungbuk National University, Chungju, Korea, 28644

³Electronics and Telecommunications Research Institute, Daejeon, Korea, 34129 Keywords: In vivo, RF/Microwaves, Work in Progress Presented by: Hae-June Lee

According to increasing public concerns regarding the effects of RF-EMFs emitted from mobile phones on brain function, we investigated the impact of RF-EMFs on neurodegenerative disease using AD mouse models. AD is the most common form of neurodegenerative disease. To evaluate the effect of RF exposure on neuroinflammation and microglial activation, we compared RF-exposed brains to those that were subjected to an anti-inflammatory agent. In this study, we found that RF exposure with a high SAR has significant anti-inflammatory effects on AD-induced neuroinflammation.

PS-51 [15:00]

AC dielectrophoresis of bacteria in coaxial mesoscopic structure potentially applicable for rapid detection and easy characterization at low cost

Leticia Gimeno Monge¹, Dominique Rauly², Jean Martins³, Hassan Nehme², Pascal Xavier² & Eric Chamberod⁴

¹Univ. Grenoble Alpes, CNRS, Grenoble INP, G2ELab, Grenoble, France, 38000 ²Univ. Grenoble Alpes, Univ. Savoie Mont Blanc, CNRS, Grenoble INP, IMEP-LaHC, Grenoble, France, 38000

³Univ. Grenoble Alpes, CNRS, IRD, Grenoble INP, IGE (UMR 5001), Grenoble, France, 38000

⁴Univ. Grenoble Alpes, IUT1, GEII, Grenoble, France, 38000 Keywords: Mechanistic/Theoretical, Static, Work in Progress Presented by: Leticia Gimeno Monge

A microwell-based bioelectrical assay, with coaxial geometry and mesoscopic size (diameter 400 µm) is designed to achieve fast dielectrophoretic migration of bacteria to its central conductor wall from an initially homogeneous bacterial suspension. The non-linear equation of cell motion is first solved using a simplified

one-dimensional model in Matlab. A 3D numerical simulation using Comsol MultiphysicsTM is then performed. The transit time of the bacteria to reach the central conductor is estimated to be less than 12 s, with an applied voltage of 20 V_{rms}. The process could be applied to improve the measurement of bacterial concentrations in drinking water, and/or the dielectric characterization of bacteria.

PS-52 [15:00] STUDENT PAPER

Computational analysis for non-invasive acquisition of craniospinal compliance

Fariba Karimi^{1, 2}, Esra Neufeld^{1, 2}, Arya Fallahi^{1, 2}, Andreas Spiegelberg³, Andrea Boraschi³, Vartan Kurtcuoglu³ & Niels Kuster^{1, 2}

¹Foundation for Research on Information Technologies in Society (IT'IS), Zurich, Switzerland

²Department of Information Technology and Electrical Engineering, Swiss Federal Institute of Technology (ETH Zurich), Zurich, Switzerland

³The Interface Group, Institute of Physiology, University of Zurich, Zurich, Switzerland Keywords: Clinical (diagnostics), Static, Work in Progress Presented by: Fariba Karimi

Diagnosis, treatment, and monitoring of patients suffering from craniospinal diseases requires the measurement of intracranial pressure (ICP). Several measurement methods have been developed, but currently only invasive techniques are sufficiently reliable to be clinically accepted. As brain geometry and dielectric properties are transiently modulated by blood and cerebrospinal fluid exchange between cranial and spinal compartments, impedance measurements may be used to monitor ICP non-invasively. In this paper, we present a numerically robust and computationally efficient method for simulating pulsation-related impedance changes of the head. The approach was verified in (semi-)analytic benchmarks and applied to real data from volunteers.

PS-53 [15:00]

Evaluation of EMF exposure during the use of surgery diathermia units by multi-worker treatment teams

Jolanta Karpowicz¹, Krzysztof Gryz¹ & Patryk Zradziński¹

¹Central Institute for Labour Protection, National Research Institute (CIOP-PIB), Warszawa, Poland, 00-701 Keywords: Occupational, IF, Work in Progress Presented by: Jolanta Karpowicz

The electromagnetic field (EMF) emitted while using surgery diathermia units (SDU) affects health care workers involved in the treatment. The ongoing study (involving: (i) questionnaires-based investigations to find configurations of the health care personnel activities during the use of SDU; (ii) measurements to find the characteristics of wave forms and levels of EMF emitted by SDU; (iii) advanced computer simulations to find

SAR distribution in the exposed workers) showed that the realistic evaluation of EMF exposure during the use of SDU needs attention to the complex frequency pattern of health care personnel exposure during the treatment and considerations of exposure scenarios involving multi-worker treatment teams.

PS-54 [15:00]

Irregularities in metrics characterising movement-related exposure to static magnetic field near MRI scanners

Jolanta Karpowicz¹

¹Central Institute for Labour Protection, National Research Institute (CIOP-PIB), Warszawa, Poland, 00-701 Keywords: Occupational, Static, Work in Progress Presented by: Jolanta Karpowicz

Evaluating the probability to experience movement-related vertigo in the strong static magnetic field (SMF), the relevant exposure metric is usually the maximum dB/dt value. It is highly important to understand if the maximum dB/dt value reported from the exposimetric measurements reflects the real worker's exposure profile or is related to the malfunctions of measurement device caused by SMF influence. Taking into account that "manual data curation" of the results of EMC-based malfunctions (found in the analyzed data) may be not achievable for long-duration recordings or for vector parameters of exposure, it is suggested to use 99.9th percentile of dB/dt from the exposimetric measurements to characterize movement-related exposure.

PS-55 [15:00]

Wideband spectral-analysis based SAR system for a comprehensive evaluation and reduction of the uncertainty of the EMF exposure-level assessment of 5G user equipment operating multiple-frequency transmissions

Kammel RACHEDI¹, Mounir TENIOU¹, Thomas Julien¹, Julien Fouques², Mansour Sylla¹, Stephane

Pannetrat¹ & Lyazid Aberbour¹

¹ART-Fi, Orsay, France, 91400

²NEXIO Group, Sevres, France, 92310 Keywords: Dosimetry (measurements), RF/Microwaves, Completed (unpublished) Presented by: Kammel RACHEDI

This paper presents for, the first time, a comprehensive evaluation of the uncertainty of the SAR assessment on a commercial 5G mobile phone, being put in real-life multiple-frequency transmissions (i.e., EN-DC), and compared to the case while the mobile phone is enforced to transmit sequentially the corresponding frequency bands. It is found that the later test mode is with higher uncertainties as compared to the case of real-life operation of the mobile-phone while being tested for SAR compliance. It is achievable thanks to novel frequency selective SAR instrumentation, which is enabled by wideband radiofrequency (RF) spectrum analysis measurement architecture, and presents a solution for the limitations of traditional SAR systems.

PS-56 [15:00]

A magnetic resonant coupling wireless power transfer system with grounded resonator to reduce interaction with human body

Xianyi Duan¹, Junqing Lan², Yinliang Diao^{1, 3}, Jose Gomez-Tames¹ & Akimasa Hirata¹

¹Dept. of Electrical and Mechanical Engineering, Nagoya , Japan, 4668555

²College of Electronic Engineering , Chengdu, China, 610065

³College of Electronic Engineering , Guangzhou, China, 510642

Keywords: Dosimetry (computational), RF/Microwaves, Completed (unpublished)

Presented by: Xianyi Duan

This study proposed a magnetic resonant coupling wireless power transfer (MRC-WPT) system with a grounded loop to mitigate its interaction with human body. For the proposed WPT with grounded resonator , the peak spatial-average SAR and whole-body average SAR were 60% reduced as compared to that without grounding. The maximum permissible input power for the proposed WPT system was estimated to be 33.5 kW at a worst-case scenario to comply with the limits for whole-body average SAR prescribed in international guidelines and standard.

PS-57 [15:00] STUDENT PAPER

Numerical assessment of the exposure to Transcranial Magnetic Stimulation coil: male and female anatomical model comparison

Simona D'Agostino^{1, 2}, Micol Colella¹, Micaela Liberti¹, Rosaria Falsaperla² & Francesca Apollonio¹

¹Department of Information Engineering, Electronics and Telecommunications, Rome, Italy, 00184

²Department of Occupational and Environmental Medicine, Epidemiology and Hygiene,, INAIL, Monte Porzio Catone, Italy, 00078

Keywords: Dosimetry (computational), ELF/LF, Work in Progress Presented by: Simona D'Agostino

The purpose of this work is to carry out a comparative evaluation of the electromagnetic assessment between male and female human anatomical models representing medical staff during transcranial magnetic stimulation (TMS) treatment, by means of numerical dosimetry. Electromagnetic exposure is evaluated using discretized realistic human body models and considering as a source a TMS circular coil. The results of the induced electric field in the human models show that in some cases the exposure limits are exceeded, but also show that the exposure assessment seems to depend on operator's gender. This study could be a useful starting point for future risk assessment studies and for providing general safety guidance.

PS-58 [15:00]

Do TRP channels partially contribute in generating the basal membrane conductance triggered by high intensity nanosecond electric pulses in bovine adrenal chromaffin cells?

Lisha Yang¹, Thomas Gould², Sophia Pierce¹, Gale Craviso¹ & Normand Leblanc¹

¹Department of Pharmacology, University of Nevada, Reno School of Medicine, Reno, Nevada, USA, 89557 ²Department of Physiology and Cell Biology, University of Nevada, Reno School of Medicine, Reno, Nevada, USA, 89557

Keywords: Electroporation, Pulsed, Work in Progress Presented by: Lisha Yang

In bovine adrenal chromaffin cells, a 5 ns electric pulse elicits an instantaneous inward current at resting membrane potential that may lead to activation of voltage gated Ca²⁺ channels. We hypothesize that this current may be partially carried by one or more TRP channels. In this study, RT-PCR experiments first confirmed the expression in bovine chromaffin cells of several members of the TRPC, TRPM, TRPV, TRPP and TRPML subfamilies, and TRPA1, including TRPC 4/5 and TRPM 7, for which specific blockers exist. Patch clamp experiments then revealed that M084, a specific blocker of TRPC4/5 channels, but not FTY720, which blocks TRPM7, inhibited the NEP-induced current, indicating that these channels may play a role in this process.

PS-59 [15:00]

Mobile phone use and time trend of brain tumor incidence rate in Korea: An ecological study

Kyung-Hwa Choi¹, Johyun Ha², Sanghyuk Bae³, Ae-kyoung Lee⁴, Hyung-Do Choi⁴, Young Hwan Ahn⁵, Mina Ha¹, Hyunjoo Joo¹, Ho-Jang Kwon¹ & Kyu-Won Jung²

¹Department of Preventive Medicine, Dankook University College of Medicine, Cheonan, Korea

²National Cancer Control Institute, Goyang, Korea

³Department of Preventive Medicine, The Catholic University of Korea, Seoul, Korea

⁴EM Environment Research Team, ETRI, Daejeon, Korea

⁵Department of Neurosurgery, Ajou University Hospital, Suwon, Korea Keywords: Epidemiology, RF/Microwaves, Completed (unpublished) Presented by: Kyung-Hwa Choi

The number of mobile phone subscribers increased in Korea. In Korea, the incidence of glioma increased, while total brain tumors not. Glioblastoma was more increased than other types of glioma in Korea. No association between the number of mobile phone subscribers with the brain tumor incidence in Korea.

PS-60 [15:00]

Complete workflow for compliance evaluations of beam-forming millimeter-wave devices

Sylvain Reboux¹, Jingtian Xi², Sven Kuehn², Beyhan Kochali³ & Niels Kuster^{2, 4}

¹ZMT Zurich MedTech AG, Zurich, Switzerland, 8004

²Foundation for Research on Information Technologies in Society (IT'IS Found, Zurich, Switzerland

³Schmid & Partner Engineering AG (SPEAG), Zurich, Switzerland

⁴Swiss Federal Institute of Technology (ETHZ), Zurich, Switzerland

Keywords: Dosimetry (measurements), RF/Microwaves, Completed (unpublished) Presented by: Niels Kuster

We provide a complete practical workflow to evaluate the maximum power density that can be achieved by a millimeter-wave array antenna on surfaces in the near- or far-field regardless of the size of the codebook or the shape of the evaluation surface. Field integral equations and electric field measurements are used to reconstruct the electromagnetic field on any evaluation surface from measurements at very close distances from the antenna. The maximum power density across the whole codebook is found by an optimizer. The proposed method provides a practical way to assess compliance of millimeter-wave array antennas and is a valuable step forward for the standardization of RF EMF exposure compliance procedures of 5G devices.

PS-61 [15:00]

Evaluation of the virucidal efficacy of high peak power microwave on bovine coronavirus on surfaces Ibtissam Echchgadda¹, Jody Cantu², Joseph Butterworth², Bryan Gamboa¹, David Freeman², Francis Ruhr², Weston Williams², Leland Johnson¹, Jason Payne¹, Robert Thomas³, William Roach⁴ & Bennett Ibey¹

¹Air Force Research Laboratory, 711th Human Performance Wing, Airman Systems Directorate, Bioeffects

Division, Radio Frequency Bioeffects Branch, JBSA Fort Sam Houston, TX, USA, 78234

²Air Force Research Laboratory, General Dynamics Information Technology, JBSA Fort Sam Houston, TX, USA, 78234

³Air Force Research Laboratory, 711th Human Performance Wing, Airman Systems Directorate, Bioeffects Division, JBSA Fort Sam Houston, TX, USA, 78234

⁴Air Force Office of Scientific Research, Air Force Research Laboratory, Arlington, VA, USA, 22203 Keywords: In vitro, RF/Microwaves, Completed (published) Presented by: Ibtissam Echchgadda

This study evaluated if 1-10,000 microseconds pulsed high peak power microwave (HPPM) at 2.8, 5.6, 8.5,

and 9.3 GHz could abrogate bovine coronavirus (BCoV) survival on a plastic surface, and thus the virus infectivity. Results showed no relevant dose dependent inactivation in virus infectivity was achieved across exposures at 1-10000 pulses compared to sham exposure. Although, there were statistically significant reductions in virus titer with 2.8 and 9.3 GHz exposures, the differences in log reduction was < 1.0 log₁₀ for all RF exposures compared to sham. The data suggest that pulsed HPPM exposures across the 2-10 GHz band might not be an effective virucidal approach for treating hard surfaces.

PS-62 [15:00] STUDENT PAPER

Super high frequency (18 GHz) electromagnetic field effects on Bacillus subtilis spores

Erim Kosyer¹, Palalle G. Tharushi Perera¹, Denver Linklater¹, Rodney Croft^{2, 3} & Elena P. Ivanova^{1, 2} ¹*Physics, RMIT University, Melbourne, Australia, 3001* ²*Australian Centre for Electromagnetic Bioeffects Research, Wollongong, Australia* ³*University of Wollongong, Wollongong, Australia Keywords: Mechanistic/Theoretical, RF/Microwaves, Work in Progress Presented by: Erim Kosyer*

As wireless technologies are constantly developing and taking leaps into the future, so do the number of electromagnetic fields (EMF) we are exposed to emitted from these devices. These EMFs range in wavelengths from a single biomolecule to whole organisms. It is understood the thermal mechanisms of interaction are responsible for possible negative effects associated with EMFs. Furthermore, there is currently no evidence surrounding non-thermal mechanisms and its possible contribution to these negative effects. Due to this gap in understanding, it brings forth a possible query that may have important ramifications for current guidelines and standards. Consequently, this issue requires further exploration.

PS-63 [15:00]

Maxwell-Wagner-based detection of bacteria through the formation of a dielectrophoretic biofilm-like layer in a coaxial mesoscopic structure

Dominique Rauly¹, Leticia Gimeno Monge², Pascal Xavier¹, Eric Chamberod⁴, Marion Amalvy^{1, 3} & Jean Martins³

¹Univ. Grenoble Alpes, Univ. Savoie Mont Blanc, CNRS, Grenoble INP, IMEP-LaH, Grenoble, France, 38000

²Univ. Grenoble Alpes, CNRS, Grenoble INP, G2Elab, Grenoble, France, 38000

³Univ. Grenoble Alpes, CNRS, IRD, INP-G, IGE (UMR 5001), Grenoble, France, 38000

⁴Univ. Grenoble Alpes, IUT1, Grenoble, France, 38000

Keywords: In vitro, ELF/LF, Concept Presented by: Dominique Rauly

This paper presents an original way to exploit the bacteria detection strategy based on dielectrophoresis (DEP) and impedimetry. Rather than using a conventional Array of InterDigitated Electrodes, a coaxial structure is used here, because it allows more quantitative analysis of bacterial concentration, and easy extension to macroscopic devices. When applying an AC voltage (20 Vrms; F < 100 kHz) a layer of bacteria rapidly forms on central conductor by DEP. This biofilm-like layer induces a Maxwell-Wagner effect leading to a significant increase of the impedance modulus, compared to a case of homogeneous bacterial concentration. Combined with the speed of operation, this leverage principle could open up new detection possibilities.

PS-64 [15:00]

Development of novel spatial synthetic exposure system for studies on thermal perception thresholds of biological effects exposed to millimeter-wave

Ryunosuke Ozaki¹, Takashi Hikage¹, Hiroshi Masuda² & Tatsuya Ishitake²

¹Faculty of Information Science and Technology, Hokkaido University, Sapporo, Japan, 0600814

²Department of Environmental Medicine, Kurume University School of Medicine Kurume, Kurume, Japan, 8300011

Keywords: Human, RF/Microwaves, Completed (unpublished) Presented by: Ryunosuke Ozaki

A novel millimeter-wave exposure equipment was developed for studies on thermal perception thresholds of biological effects exposed to millimeter-wave at 60 GHz band that is one of beyond 5G candidate frequency band. To achieve controllable high-duty exposure on human skin, we newly designed a spatial synthetic exposure system consists of two lens antennas that can irradiate focused beam. After 6 minutesof exposure, the temperature on an expected area of a skin phantom surface increased 4 degrees Celsius with 2W of antenna input power. In summary, developed equipment can achieve the required high exposure on the sample.

PS-65 [15:00]

EMF-Portal as database for literature searches in systematic reviews

Dagmar Dechent¹, Lambert Bodewein¹, Kristina Schmiedchen¹ & Sarah Driessen¹

¹Research Center for Bioelectromagnetic Interaction (femu), Uniklinik RWTH Aachen University, Aachen, Germany, 52074

Keywords: Public Health Policy, All Frequencies, Work in Progress Presented by: Dagmar Dechent

The EMF-Portal (www.emf-portal.org) is the most comprehensive scientific literature database on biological and health-related effects of electromagnetic fields with an inventory of currently 33,200 publications (April 2021). It served as the major literature database to identify relevant articles for nine systematic reviews of our team that evaluate biological and health-related effects of electric, magnetic and electromagnetic fields. Here, we outline the methodology and the general findings from the prepared systematic reviews.

PS-66 [15:00]

Exposure to extremely low-frequency magnetic fields in low- and middle-income countries: An overview

Dan Baaken^{1, 3}, Daniel Wollschläger¹, Theodoros Samaras², Joachim Schüz³ & Isabelle Deltour³

¹Institute of Medical Biostatistics, Epidemiology and Informatics (IMBEI), University Medical Center Mainz, Mainz, Germany, 55131

²Aristotle University of Thessaloniki, Thessaloniki, Greece, 54124

³Environment and Lifestyle Epidemiology, International Agency for Research on Cancer (IARC/WHO), Lyon, France, 69372

Keywords: Epidemiology, ELF/LF, Completed (published) Presented by: Isabelle Deltour

To compare extremely low-frequency magnetic field (ELF-MF) exposure in the general population in low- and middle-income countries (LMICs) with high-income countries (HIC), we carried out a systematic literature search. We identified 25 relevant studies, which showed large heterogeneity in design, exposure environment and exposure assessment. Proportions of homes exposed to at least 0.3µT were many times higher in LMICs compared to HIC. Based on limited data, exposure to ELF-MF in LMICs appeared higher than in HIC, but a

direct comparison is hampered by a lack of systematic monitoring studies. Representative measurement studies on residential exposure to ELF-MF are needed in LMICs together with better standardization in the reporting.

PS-67 [15:00]

The effect of 1800 MHz radiofrequency electromagnetic field and cadmium co-exposure on protein expression profile and metabolic profile in JAR and JEG-3 cells

Longtao Zhu¹, Yumin Jin¹, Chuan Sun² & Guangdi Chen¹

¹Bioelectromagnetics Lab, Zhejiang University School of Medicine, Hangzhou, China, China, 310058

²Zhejiang Provincial Key Lab of Geriatrics & Geriatri, Department of Geriatrics, Zhejiang Hospital, Hangzhou, China, China, 310058

Keywords: In vitro, RF/Microwaves, Work in Progress Presented by: Guangdi Chen

Proteomics was used to analyze the changes of protein expression profile in JAR and JEG-3 cells after exposure to 1800 MHz RF-EMF and Cd. The results showed that 156 and 172 proteins expressed differentially in JAR and JEG-3 cells respectively. In addition, co-exposure of 1800 MHz RF-EMF and Cd can induce ATP5IF1 protein up-regulated in JAR cells while down-regulated in JEG-3 cells; BASP1, SRXN1, MT2A and MT1X and other proteins also expressed differentially in JAR and JEG-3 cells. Finally, the differently expressed proteins in JAR cells (MT2A) and JEG-3 cells (Cyclin D3 and TM2D3) were verified by Western blot. The results of this study suggested that 1800 MHz RF-EMF and Cd could affect the proteomic profiles in JAR and JEG-3 cells.

PS-68 [15:00] Young Scientist

10ns bipolar pulses: effects on the plasma membrane permeability of 2D and 3D cellular models

Rosa Orlacchio¹, Muriel Golzio², Marie-Pierre Rols², Philippe Leveque¹ & Delia Arnaud-Cormos^{1, 3}

¹Univ. Limoges, CNRS, XLIM, UMR 7252, F-87000, Limoges, France

² Institut de Pharmacologie et de Biologie Structurale, Université de Toulouse, CNRS, UPS, 31077, Toulouse, France

³Institut Universitaire de France (IUF), 75005, Paris, France Keywords: Electroporation, Pulsed, Completed (published) Presented by: Rosa Orlacchio

Bipolar pulses can cancel the bioeffects induced by high-intensity nsPEF. However, cancellation can be totally reversed by applying a certain delay between the two opposite phases of the bipolar pulse. In this study we explore the effects of 10 nsPEF unipolar, bipolar, or bipolar with a 100 ns interphase interval, on the plasma membrane permeabilization. YO-PROTM-1 (YP) and propidium iodide (PI) uptake were used as markers of membrane permeabilization immediately after the application of the pulses in in vitro 2D and 3D cellular models, respectively. Results evidenced that bipolar cancellation occurred in both models considered and it was completely tapered out when a delay of 100 ns was introduced between the two phases.

PS-69 [15:00]

Calculated, simulated, and measured RF EMF exposure in the proximity of cellular base station antenna sites between 800 MHz and 2600 MHz

Gunter Vermeeren¹, Leen Verloock², Mart Verlaek³, Michel Goethals³, Wout Joseph² & Luc Martens¹ ¹*imec - WAVES, Department of Information Technology at Ghent University, Ghent, Belgium, B-9052* ²WAVES, Department of Information Technology at Ghent University - imec, Ghent, Belgium, B-9052
 ³Bureau for Environment and Spatial Development – Flanders, Departement Omgeving, Brussels, Belgium, B-1000

Keywords: Dosimetry (computational), RF/Microwaves, Completed (published) Presented by: Gunter Vermeeren

Regulatory bodies most often evaluate compliance around base station antenna sites with local regulations and international guidelines using calculations or simulations. In this study, we compared calculated with and simulated and measured exposure around selected base station antenna sites in Flanders. We measured the RF exposure around base station antennas using a spectrum analyzer and a triaxial probe, calculated the exposure based on the far-field radiation patterns of the base station antennas, and applied the FDTD method to simulate the exposure. We observed that variations of up to 30 dB between calculated, measured, and simulated exposures at locations that were in non line-of-sight of the base station antennas.

PS-70 [15:00]

Effect of High Peak Power Microwaves (HPPMs) on bovine coronavirus (BCoV) survival in solution

Jody Cantu¹, Ibtissam Echchgadda², Joseph Butterworth¹, Bryan Gamboa², David Freeman¹, Francis Ruhr¹, Weston Williams¹, Leland Johnson², Jason Payne², Robert Thomas³, William Roach⁴ & Bennett Ibey²

¹Air Force Research Laboratory, General Dynamics Information Technology, JBSA Fort Sam Houston, Texas, USA, 78234

²Air Force Research Laboratory, 711th Human Performance Wing, Airman Systems Directorate, Bioeffects Division, Radio Frequency Bioeffects Branch, JBSA Fort Sam Houston, Texas, USA, 78234

³Air Force Research Laboratory, 711th Human Performance Wing, Airman Systems Directorate, Bioeffects Division, JBSA Fort Sam Houston, Texas, USA, 78234

⁴Air Force Office of Scientific Research, Air Force Research Laboratory, Arlington, Virginia, USA, 22203 Keywords: In vitro, RF/Microwaves, Completed (published) Presented by: Jody Cantu

Previous work showed that exposing viral solutions to radio frequency (RF) energy caused inactivation suggesting its utility for large area decontamination. Specifically, Yang et al. reported that frequencies from 6–12 GHz impacted influenza virus infection and hypothesized it was due to mechanical coupling of the RF field. Thus, we evaluated the effect of high peak power microwave (HPPM) exposure on suspensions of a severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) surrogate (bovine coronavirus, BCoV). Results indicated inactivation of BCoV at specific frequencies (5.6 GHz and 9.3 GHz); however, inactivation of BCoV was most effective at prolonged exposure during which the temperature of the solution increased to above 80 °C.

PS-71 [15:00]

Effects of prenatal exposure to a radiofrequency-electromagnetic field on the developing serotonergic system; a preliminary report

Hye Sun Kim¹, Hyung Do Choi³, Jeong-Ki Pack⁴, Nam Kim⁵ & Young Hwan Ahn^{1, 2}

¹Department of Neurosurgery, Ajou University School of Medicine, Suwon, Korea, 16499

²Neuroscience Graduate Program, Department of Biomedical Sciences, Graduate School of Ajou University, Suwon, Korea, 16499

³Radio Technology Research Department, Electronics and Telecommunications Research Institute, Daejeon, Korea, 34129

⁴Department of Radio Sciences and Engineering, College of Engineering, Chungnam National University, Daejeon, Korea, 34134

⁵School of Electrical and Computer Engineering, Chungbuk National University, Chungbuk National University, Cheongju, Korea, 28356 Keywords: In vivo, RF/Microwaves, Completed (unpublished) Presented by: Hye Sun Kim

We evaluated the effect of prenatal exposure to RF-EMF on the developing serotonergic system in rats. We suggest that maternal and fetal serotonin levels can be affected by prenatal RF- EMF exposure during pregnancy.

PS-72 [15:00]

Assessing membrane charging by alternating electric fields in giant unilamellar vesicles

Allen Kiester¹, Stacey Martens¹, Zachary Coker², Joel Bixler¹, Esin B. Sözer³ & Bennett Ibey¹ ¹Radio Frequency Bioeffect Branch, Air Force Research Laboratory, Fort Sam Houston, Texas, USA, 78234 ²SAIC, Fort Sam Houston, Texas, USA, 78234 ³Frank Reidy Center for Bioelectrics, Old Dominion University, Virgnia, USA, 23529

Keywords: Electroporation, Pulsed, Completed (unpublished) Presented by: Bennett Ibey

Our group recently published direct observation of membrane charging in FluoVolt[™] labeled CHO-K1 cells by nanosecond electrical pulses using a streak camera. Using this technique, called Streak Camera Microscopy (SCM), we imaged the membrane charging dynamics in giant unilamellar vesicles (GUVs) during AC exposures up to 6 MHz and compared these results to existing capacitive circuit models of membranes. This work shows further application of Streak Camera Microscopy for evaluation of high speed biological events.

PS-73 [15:00]

Preliminary results of Global questionnaire survey to researchers on standardization of experimental protocol for safety assessment of EMF

Akira Ushiyama¹, Kenji Hattori², Masateru Ikehata³, Keiji Wada⁴ & Yukihisa Suzuki⁴

¹Department of Environmental Health, National Institute of Public Health, Saitama, Japan, 3510197

²Environmental Toxicology Lab., Meiji pharmaceutical University, Tokyo, Japan, 2048588

³Biotechnology laboratory, Railway Technical Research Institute, Tokyo, Japan

⁴Department of Electrical and Electric Engineering, Tokyo Metropolitan University, Tokyo, Japan Keywords: Standards, All Frequencies, Work in Progress Presented by: Akira Ushiyama

There is no unified method for evaluating the toxicity of electromagnetic fields and assessing health risks. In order to develop a standardization of experimental protocol for safety assessment of EMFs, we conducted an internet survey of researchers to investigate their attitudes toward the standardization method.

PS-74 [15:00]

Effects of local exposure to 28 GHz-millimeter-wave on skin blood flow in human volunteer

Tatsuya Ishitake¹, Miyako Inoue¹, Etsuko Ijima¹, Takashi Hikage^{2, 3}, Ryunosuke Ozaki², Akimasa Hirata³, Sachiko Kodera³, Kenji Taguchi⁴, Tatsuya Kashiwa⁴ & Hiroshi Masuda¹

¹Department of Environmental Medicine, Kurume University, Kurume, Japan, 830-0011

²Graduate school of Information Science and Technology, Hokkaido University, Hokkaido, Japan, 060-0814
 ³Department of Electrical and Mechanical Engineering, Nagoya Institute of Technology, Nagoya, Japan, 466-8555

⁴Department of Electrical and Electronic Engineering, Kitami Institute of Technology, Kitami, Japan, 090-8507 Keywords: Human, RF/Microwaves, Completed (unpublished) Presented by: Tatsuya Ishitake

There is little information about the biological effects of millimeter-waves (MMW) such as 5th generation wireless systems (5G) and WiGig (IEEE 802.11ad) on human body. Aim of this study was to evaluate changes in skin blood flow at the forearm under the local exposure to 28 GHz-MMW in human volunteers. The local increase in skin blood flow was found within the target skin exposed at 1 W of antenna input power. Under the same exposure conditions, the elevation of target temperature was also observed. Therefore, our findings suggest that the local exposure to 28 GHz-MMW could affect blood flow regulation as a thermal response of human skin under present exposure conditions.

PS-75 [15:00]

Measurement accuracy of inexpensive magnetic field meters and magnetic field meter applications for smart devices

Tetsuya Tsutsumi¹, Yuuki Yamato¹, Ryuusaku Furuichi¹, Toshihisa Kadoya¹, Tomomichi Omote¹ & Chiyoji Ohkubo¹

¹Japan EMF Information Center, Japan Electrical Safety & Environment Technol, Tokyo, Japan, 105-0014 Keywords: Mechanistic/Theoretical, ELF/LF, Completed (published) Presented by: Tomomichi Omote

There are inexpensive meters and freely downloadable applications (apps) for smart devices to measure magnetic field (MF) strength on the market. In this study, we evaluated the measurement accuracy of these meters and apps that can be easily available to the general public, under a uniform magnetic field at the power frequency (50 Hz) generated by a coil. It was shown that the measured values of these meters should be used only as a guide and the apps were not suitable for MF measurement.

PS-76 [15:00]

IIOSH (Israel Institute for Occupational Safety and Hygiene) Non-Ionizing Radiation Policy

Amnon Duvdevany¹

¹NIR Section, IIOSH (Israel Institute for Occupational Safety and Hygiene), Tel-Aviv, Israel, 6101001 **Keywords: Public Health Policy, All Frequencies, Completed (published) Presented by: Amnon Duvdevany**

The Israel Institute for Occupational Safety and Hygiene (IIOSH) has developed a Non-Ionizing Radiation (NIR) guide to protect workers at workplaces from NIR hazards. The guide is intended to protect both General Public and Occupational Exposure populations, while implementing different standards and guidelines according to Israeli laws and regulations of different ministries and while applying precautionary principle to decrease exposure levels. The guide assists the employer to differentiate between populations and environments, to implement initial and general steps to reduce exposures and to prepare a detailed protection program when needed. The IIOSH policy rational, details and challenges will be discussed.

PS-77 [15:00]

Evaluation of membrane potential response to oscillating electric fields using streak camera microscopy

Joel Bixler¹, Allen Kiester¹, Zachary Coker² & Bennett Ibey¹ ¹*Air Force Research Laboratory, JBSA Fort Sam Houston, Texas, USA, 78234* ²*SAIC, San Antonio, Texas, USA, 78234*

Keywords: Electroporation, Pulsed, Completed (unpublished) Presented by: Joel Bixler

Streak camera based microscopy (SCM) is a powerful technique for resolving sub-microsecond dynamics for cellular exposures to pulse nanosecond electrical fields (pnsEF). Previous work demonstrated the ability to image changes in membrane potential during cellular exposure to unipolar and bipolar electric pulses. This presentation will discuss continued work to apply SCM, in conjunction with FluoVolt[™] dye, to study the response of multiple cell lines to alternating current (AC) electric fields. Understanding the dynamics of plasma membrane charging during AC pulses will better inform those using such pulses to modify cell behavior.

PS-78 [15:00] STUDENT PAPER

Collocated and distributed Massive MIMO from the human EMF exposure perspective: a comparative study

Sergei Shikhantsov¹, Arno Thielens¹, Gunter Vermeeren¹, Emmeric Tanghe¹, Piet Demeester¹, Luc

Martens¹ & Wout Joseph¹

¹Department of Information Technology, Ghent University/IMEC, Ghent, Belgium, 9000 Keywords: Dosimetry (computational), RF/Microwaves, Completed (unpublished) Presented by: Sergei Shikhantsov

In this numerical study we compare two deployment strategies of massive MIMO from human exposure perspective. Propagation is modelled using the Ray-Tracing method at 3.5 GHz in a stochastic environment model. An indoor industrial environment is modelled as a square room and scatterers randomly distributed in it. Two base station (BS) configurations are studied: a compact antenna array and an array evenly covering the floorplan ceiling. The exposure is assessed in terms of the psSAR the head normalized to the power density, using the FDTD method. The exposure of the distributed BS is found to be at least two times lower than that of the collocated BS. Implications for the exposure of practical massive MIMO implementations are discussed.

PS-79 [15:00]

Nano-Pulse Stimulation (NPS) demonstrates superior efficacy in the treatment of B16-F10 melanoma tumors and produces less permanent skin damage compared to cryoablation

Amanda McDaniel¹, Bruce Freimark¹, Cebrina Bustos¹, Jeffrey Litt¹ & Richard Nuccitelli¹

¹Biology, Pulse Biosciences, Hayward, CA, USA, 94545

Keywords: In vivo, Pulsed, Work in Progress Presented by: Amanda McDaniel

Nano-Pulse Stimulation (NPS) is a non-thermal energy modality that applies ultrafast, high-amplitude energy pulses in the nanosecond range. The application of NPS to tissues initiates a cascade of events within cells that leads to regulated cell death (RCD). B16-F10 mouse melanoma tumors were treated with NPS or cryoablation and the efficacy and resulting skin damage was compared between these modalities. NPS eliminated 95% of all tumors whereas cryoablation only eliminated 50%. In addition, cryoablation produced more dermal fibrosis than NPS. Overall, NPS demonstrated superior efficacy at complete tumor elimination and produced less dermal fibrosis than cryoablation.

PS-80 [15:00]

Experimental set up for 60 GHz millimeter wave exposure to in vitro 3D tissue models

Masateru Ikehata¹, Yukihisa Suzuki², Toshio Kamijyo², Sachiko Yoshie¹, Takafumi Tasaki⁴, Masami Kojima^{3,}

⁴ & Hiroshi Sasaki^{3, 4}

¹Biotechnology Laboratory, Railway Technical Research Institute, Tokyo, Japan, 1858540

²Department of Electrical Engineering and Computer Science, Tokyo Metropolitan University, Tokyo, Japan, 1920397

³Faculty of Ophthalmology, Kanazawa Medical University, Kanazawa, Japan, 9200293

⁴Department of Life Sciences Medical Research Institute, Kanazawa Medical University, Kanazawa, Japan, 9200293

Keywords: In vitro, RF/Microwaves, Work in Progress Presented by: Masateru Ikehata

We constructed an experimental setup of 60 GHz millimeter wave exposure to evaluate biological effects in in vitro 3D human tissue model to evaluate biological effects by exposure the millimeter wave. An exposure apparatus is constructed with a lens antenna and to expose 60 GHz millimeter wave (up to 500 mW/cm² in maximum power density) from directly above the surface of tissue model in a temperature and humidity controlled chamber. In preliminary experiments, the power density of the exposed millimeter wave had a Gaussian distribution on the cell surface, and cell death inferring by the thermal effect was observed dependent on the input power. A detailed analysis is underway and will be presented at the conference.

PS-81 [15:00] STUDENT PAPER

A grid electrode for *in-vitro* studies under stimulation of nanosecond electric pulses

Wen Dang¹, Xin Rao², Xiaodong Chen^{1, 2} & Yasir Alfadhl¹

¹School of Electronic Engineering and Computer Science, Queen Mary University of London, London, United Kingdom, E1 4NS

²Circuits and Systems Key Laboratory of the Ministry of Education, Hangzhou Dianzi University, HangZhou, China, 310018

Keywords: In vitro, Pulsed, Work in Progress Presented by: Wen Dang

Intensive nanosecond pulsed electrical fields (nsPEF) have been applied to induce a range of biological effects for the therapeutic purpose. High voltage nanosecond pulses are usually applied across a narrow metal plate cuvette in in-vitro studies. However, due to a high conductivity of the cell load culture, the resistance tends to be as low as a few tens of Ohms if a large volume of the cell samples is loaded. The low cell load resistance will result in a large current flow- posing a technical challenge to the pulse generator and also distort the pulses. In this paper, the grid electrode is proposed to increase the cell load resistance and reduce the parasitic capacitance, which exhibits an improved performance based on EM simulation.

PS-82 [15:00]

Preliminary measurements of dielectric properties of excised human tissues and the associated challenges thereof

Anton Kordic¹, Andela Matkovic², Antonia Jakovcevic³ & Antonio Sarolic²

¹Department of Neurosurgery, University Hospital Centre Zagreb, Zagreb, Croatia, HR-10000

²Chair of Applied Electromagnetics, University of Split, FESB, Split, Croatia, HR-21000

³Department of Pathology and Cytology, University Hospital Centre Zagreb, Zagreb, Croatia, HR-10000 Keywords: Dosimetry (measurements), RF/Microwaves, Work in Progress Presented by: Anton Kordic

We initiated the measurement campaign of dielectric measurements of excised human tissues obtained from hospital surgeries and autopsies. However, a number of logistical problems were encountered. The campaign

is time-consuming and inefficient with low throughput, if the samples are to be measured within a short period after excision. To circumvent this, preservation of sample properties would be required over an extended period, requiring careful protocols for tissue preservation and handling. Despite the problems with the small sample volumes, dehydration, degradation over time, and probe pressure uncertainty, in this pilot study the results converged towards the reference values.

PS-83 [15:00]

Effects of high intensity local exposure to 26.5 GHz-millimeter-waves on neuronal cells in rat brain

Etsuko Ijima¹, Tatsuya Ishitake¹, Akimasa Hirata², Sachiko Kodera², Akiko Matsumoto³, Takashi Hikage⁴ & Hiroshi Masuda¹

¹Department of Environmental Medicine, Kurume University, Kurume, Japan, 830-0011

²Department of Electrical and Mechanical Engineering, Nagoya Institute of Technology, Nagoya, Japan, 466-8555

³Department of Social Medicine, Saga University School of Medicine, Saga, Japan, 849-8501

⁴Graduate school of Information Science and Technology, Hokkaido University, Hokkaido, Japan, 060-0814 **Keywords: In vivo, RF/Microwaves, Completed (unpublished) Presented by: Etsuko Ijima**

The possibility of 5G-MMW of mobile phones to cause any adverse health effects on the brain is a current issue in public health. However, the intensity level of the 5G-MMW exposure, which could occur the inflammation of neuronal cells, was still unclear. Aim of the present study was to investigate a threshold of the local exposure intensity of 26.5 GHz-MMW for the expression of COX-2 as an indicator of inflammation, in the rat brain. We found obvious COX-2 induction in neuronal cells in the exposed rat cortex 24 hours after the exposure under high-intensity exposure conditions.

PS-84 [15:00] STUDENT PAPER

Electromagnetic characterization of PEMFs for the neuroprotective treatment of ischemic strokes in semi-specific models: a comparison between an active and a placebo patient

Sara Fontana¹, Micol Colella¹, Simona Salati², Stefania Setti², Francesca Apollonio¹, Ruggero Cadossi² & Micaela Liberti¹

¹Department of Information Engineering, Electronics and Telecommunications (DIET), University of Rome "La Sapienza", Rome, Italy, 00184

²IGEA Biophysics Laboratory, Carpi, Italy, 41012 Keywords: Dosimetry (computational), ELF/LF, Work in Progress Presented by: Sara Fontana

The application of low intensity and low frequency pulsed electro-magnetic fields (LF-PEMFs) may represent a neuroprotective approach for the treatment of cerebral damages in patients affected by acute ischemic stroke. An ongoing randomized, placebo-controlled, double-blind study aims to validate the PEMFs as a noninvasive, effective, tolerable, and safe treatment, as an adjunctive treatment to drug therapies already in use. This work proposes a dosimetric study on semi-specific models of a placebo and an active patient, to preliminary confirm the possible correlation between the evolution of ischemic lesion and the magnetic field values, as observed in active patients.

PS-85 [15:00]

Proposal of a 5G 3.5 GHz in vitro exposure system by means of a radial transmission line

Young Seung Lee¹, Sangbong Jeon¹ & Hyung-Do Choi¹

¹Radio & Satellite Research Division, Electronics and Telecommunications Research Institute, Daejeon, Korea, 34129

Keywords: In vitro, RF/Microwaves, Work in Progress Presented by: Young Seung Lee

A fifth-generation 3.5 GHz in vitro exposure system is proposed by means of a radial transmission line (RTL). A conical horn antenna is employed for feeding to allow field symmetry. Simulation results of the input RTL return loss indicate that higher-order modes are successfully suppressed inside a radial waveguide with decreasing RTL height. Optimizations are also performed for the single mode operation in order to assure in vitro experiment performances.

PS-86 [15:00] STUDENT PAPER

Influence of the 4G/5G dynamic spectrum sharing on human RF exposure to mobile radio services

Lisa-Marie Schilling¹, Christian Bornkessel¹ & Matthias Hein¹

¹*RF* & *Microwave Research Laboratory, Thuringian Center of Innovation in Mobility, TU Ilmenau, Ilmenau, Germany*

Keywords: Dosimetry (measurements), RF/Microwaves, Work in Progress Presented by: Lisa-Marie Schilling

The gradual shutdown of the 3G mobile radio network in Germany releases spectral resources in the 2100 MHz band which can be used for successor technologies such as 4G and 5G. Since mid of 2020, dynamic spectrum sharing (DSS) has been increasingly used to enable parallel operation of 4G and 5G in one and the same frequency band. There is an increasing need of information with regard to a possible change in exposure associated with DSS. Therefore, investigations were carried out to study the exposure across the 2100 MHz band in scenarios with and without DSS. Overall, the maximum exposure has not changed due to 4G/5G DSS. The instantaneous exposure has remained comparable or even slightly decreased compared to the previous status.

PS-87 [15:00]

Development of phantom for human body detection focusing on RCS

Kazuki Sato¹ & Kazuyuki Saito²

¹Graduate School of Science and Engineering, Chiba University, Chiba, Japan

²Center for Frontier Medical Engineering, Chiba University, Chiba, Japan Keywords: Human, RF/Microwaves, Work in Progress Presented by: Kazuki Sato

In this research, we are developing a phantom for human body detection system that is necessary for the development of spatial transmission type WPT. We calculated the RCS of the human body at 5.7 GHz by numerical calculation, and developed a phantom with that value as the target.

PS-88 [15:00]

New insights from a Bayesian analysis of melatonin levels and low-frequency magnetic fields Nicolas Bouche¹ & Kevin McConway² ¹CRAL, University of Lyon1, St Genis Laval, France, F-69230 ²Mathematics And Statistics, The Open University, Milton Keynes, United Kingdom, MK7 6AA Keywords: Epidemiology, ELF/LF, Completed (published)

Presented by: Nicolas Bouche

The epidemiological study of Wertheimer1979 raised concerns for adverse health effects due to Extremely Low Frequency magnetic fields (ELF MF) generated by power lines. Since, epidemiological studies and laboratory studies on rats have often been contradictory, specifically regarding the biomarker melatonin. Here, we use a Bayesian model and a non-parametric approach to show that past contradictory results can be reconciled under a single framework, resolving a long standing controversy.

PS-89 [15:00]

An In Vivo exposure system for ELF magnetic field exposure

Myles Capstick¹, Thomas Fussinger¹, Annette Bitsch³ & Niels Kuster^{1, 2}

¹Foundation for Research on Information Technologies in Society (IT'IS), Zurich, Switzerland, CH-8004 ²Department of Information Technology and Electrical Engineering, Swiss Federal Institute of Technology (ETH Zurich), Zurich, Switzerland, CH-8092

³Toxicology and Environmental Hygiene, Fraunhofer ITEM, Hannover, Germany, 30625 Keywords: In vivo, ELF/LF, Work in Progress Presented by: Myles Capstick

This paper describes the exposure system designed for the Federal Office for Radiation Protection (Bundesamt für Strahlenschutz) BFS in Germany to study the possible link between extremely low frequency magnetic fields and childhood Leukemia using genetically modified ETV6-RUNX1 mice predisposed to the occurrence of leukemia. The exposure system provides a homogeneous 50 Hz magnetic field exposure at up to 1.5mT with both fundamental and harmonic content and can house up to 315 mice per exposure group.

PS-90 [15:00]

Variations of induced electric field for an exposed mouse in an 85kHz magnetic field generator

Siriwat Wasoontarajaroen¹, Munetaka Kanagawa¹, Yukihisa Suzuki¹, Kasuki Matsubara¹, Keiji Wada¹, Shin Ohtani², Kenji Hattori², Akira Ushiyama³ & Satoshi Nakasono⁴

¹Graduate School of Systems Design, Tokyo Metropolitan University, Hachioji, Japan, 192-0361

²Department of Hygienic Chemistry, Meiji Pharmaceutical University, Kiyose, Japan, 204-8588

³Department of Environmental Health, National Institute of Public Health, Wako, Japan, 351-0197

⁴Environmental Science Research Laboratory, Central Research Institute of Electric Power Industry, Abiko, Japan, 270-1194

Keywords: Dosimetry (computational), IF, Work in Progress Presented by: Siriwat Wasoontarajaroen

Variations in the induced electric field intensity of an exposed mouse body due to mass, posture and position were numerically evaluated. Exposure simulations were performed on three homogeneous mouse models made from different data sources, including anatomical, 3D photogrammetry, and oval shape models. Results were given in the whole-body-average and 99th-percentile values of the induced electric field intensity.

Silver Sponsors

FOUNDATION

Bronze Sponsors

Booths

Author Index

A.M.G.P. Bamberg, Pedro: S05-3 Aberbour, Lyazid: PS-55 Achari, Preeya: S04-6, PS-11 Addison, Darren: PS-44, S11-4 Aerts, Sam: S01-3, FS-6, S05-2, S09-7, PS-26, S01-6 Agüero, Ramón: S05-2 Ahmad, Afzaal: S09-6 Ahn, Young Hwan: PS-71, PS-59 Aihara, Mutsumi: PS-14 Akutagawa, Masatake: FS-2, PS-14, PS-5 Al-harrach, Mariam: FS-9, PS-46 Alfadhl, Yasir: PS-23, PS-81, FS-14, FS-5 Alomainy, Akram: P2-1 Alonso, Fabiola: S03-6 Alteköster, Carsten: W1-1, W1-2 Alzaabi, Fatima: PS-23, FS-5 Amalvy, Marion: PS-63 Aminzadeh, Reza: S09-3 Andre, Franck: S13-7, S03-5, S07-3 Anthony, Daniel C: S06-2 Apollonio, Francesca: PS-84, FS-1, S03-5, S03-7, PS-29, S07-3, FS-11, PS-35, PS-57, FS-15, PS-4 Apostolidis, Christos: PS-28, S05-2 Arnaud-Cormos, Delia: S04-3, PS-68, S04-2 Askari, Hussain: PS-37 Ayoub, Ahmed T.: PS-19 Baaken, Dan: PS-66 Babin, Carole: S08-1 Bach, Véronique: S06-4 Bae, Sanghyuk: PS-59 Bahr, Achim: S06-1 Baragona, Marco: FS-4, PS-21 Barbault, Alexandre: PS-11, S04-6 Barnes, Frank: W3-1, W3-5, W3-4, W3-7 Baroli, Davide: PS-21, FS-4 Bartolomei, Fabrice: S03-6 Bayarzaya, Batchingis: S01-4 Beane, Wendy: W3-3 Bellizzi, Letizia: S03-7 Benassi, Barbara: PS-40, S13-6 Benini, Martina: PS-2, PS-34, S13-2 Benquet, Pascal: PS-46, FS-9 Beyer, Lukas: S02-6 Biffoni, Mauro: S04-5 Bit-Babik, Giorgi: S03-2 Bitsch, Annette: PS-18, S06-1, PS-89 Bixler, Joel: S13-3, S13-1, PS-72, PS-77 Blackman, Carl: PS-11, S04-6 Bodewein, Lambert: PS-65 Bodis, Stephan: S10-2, S10-5

Boehmert, Christoph: PS-42 Boillée, Severine: S04-3 Bonato, Marta: S09-7, PS-34, PS-2, S13-2, PS-7 Boone, Matthieu: S09-3 Boraschi, Andrea: FS-17, PS-52 Bordarie, Jimmy: PS-31 Bories, Serge: S11-5 Bornkessel, Christian: FS-16, S01-1, PS-86 Bossi, Silvia: PS-3 Bouche, Nicolas: PS-88 Bouffler, Simon: S06-2 Bouisset, Nicolas: S12-4, S08-3 Bouland, Catherine: PS-31 Braeckman, Lutgart: S12-6 Braun, Anne: S06-4 Bregigeon, Pauline: S02-4 Brezovich, Ivan: S04-6 Brislinger, Dagmar: S07-1 Broom, Kerry A.: S06-2 Bureau, Isabelle: S08-1 Burns, Jacob: PS-12 Bustos, Cebrina: PS-79 Butterworth, Joseph: S04-1, PS-61, PS-70 Bühlmann, Erik: FS-8, PS-38 Cabanes, Pierre-André: S08-1, S12-4, S08-3 Cadossi, Matteo: FS-1, PS-4 Cadossi, Ruggero: FS-15, PS-84 Calderon, Carolina: PS-44 Cantu, Jody: S04-1, PS-61, PS-70 Capstick, Myles: S04-7, PS-89, S10-2, PS-33, S07-2, S10-5, FS-7 Caramazza, Laura: S07-3, PS-29, S03-5 Carducci, Filippo: PS-35, S03-7 Carstensen, Saskia: S06-1 Carvallo Pecci, Andres: S08-3 Carvallo, Andres: S12-4 Casciati, Arianna: S13-6 Cassara, Antonino Mario: S07-2 Castellani, Gastone: PS-29 Cavagnaro, Marta: S10-8 Chafai, Djamel E.: PS-19 Chamberod, Eric: PS-63, PS-51 Chen, Guangdi: PS-67 Chen, Xiaodong: FS-14, PS-23, FS-5, S02-1, PS-81 Chiaramello, Emma: PS-34, S09-7, S13-2, PS-7, PS-2 Chittams, Alexandra E.: S02-2 Choi, Domin: PS-37 Choi, Hyung Do: PS-71 Choi, Hyung-Do: PS-85, PS-50, PS-59, PS-37 Choi, Kyung-Hwa: PS-59

Chopra, Nishtha: PS-33, FS-7, PS-44 Chou, C. K.: P3-1, S12-2 Christy, Robert: S06-5 Cifra, Michal: PS-19 Cindric, Helena: S02-6 Claudel, Julien: PS-47, FS-10 Coker, Zachary: S13-3, PS-72, PS-77 Colella, Micol: FS-1, S03-7, PS-4, FS-11, PS-84, PS-57, PS-35, FS-15 Colombi, Davide: PS-45, S01-3 Conil, Emmanuelle: S11-5 Connolly, Richard: S02-3 Consales, Claudia: PS-40 Consortium, RISEUP: PS-25 Courouve, Laurène: S08-1 Craviso, Gale: S13-4, PS-58, S02-5, S13-5 Cridland, Nigel: PS-44 Crocco, Lorenzo: S10-8 Croft, Rodney: FS-12, PS-62 Cujia, Kristian: S11-1 D'Agostino, Simona: PS-57, FS-11 d'Inzeo, Guglielmo: PS-3 Dahlmann, Franziska: S06-1 Dang, Wen: PS-81, S02-1, FS-14 Danitz, Dave: S02-3 Danker-Hopfe, Heidi: PS-12 Dasenbrock, Clemens: S06-1 Dassonville, David: S11-5 Dauly, Gautier: PS-46, FS-9 De Angelis, Annalisa: S03-5, S07-3, PS-29 De Borre, Eline: S09-3 De Clercq, Eva: PS-31 de las Heras Gala, Tonia: PS-18 De Santis, Valerio: S03-2 De Seze, Rene: S06-4, W2-3, S06-3, W2-1 De Waegeneer, Els: S12-6 Dechent, Dagmar: PS-65 del Brocco, Matteo: PS-3 Deltour, Isabelle: S11-5, PS-66 Demeester, Piet: PS-78, FS-13, S01-5 Deprez, Kenneth: PS-26, FS-6, S01-3 Deschamps, François: PS-47, S08-3, S12-4, FS-10 Deser, Andreas: S05-1, PS-13 Di Francesco, Antonio: S03-2 Diao, Yinliang: S11-2, PS-56 Dieudonné, Maël: W4-3, PS-31 Dieuset, Gabriel: FS-9, PS-46 Dongus, Stefan: PS-38, S12-3, FS-8 Dorn, Hans: PS-12 Dossi, Laura: PS-2 Driessen, Sarah: PS-65, S08-2 Duan, Xianyi: PS-56 Duburcq, Anne: S08-1 Duerr, Sabine: PS-36

Dufossée, Mélody: S04-2 Durkin, Anthony: S06-5 Duvdevany, Amnon: PS-76 Díez, Luis: S05-2 Echchgadda, Ibtissam: PS-61, S04-1, PS-70 Edeline, Jean-Marc: S04-3 Eeftens, Marloes: PS-38, FS-8, S11-4 Egger, Sebastian: PS-38, FS-8 Eggert, Torsten: PS-12 Emoto, Takahiro: PS-14, PS-5, FS-2 Failla, Martina: PS-3 Fallahi, Arya: FS-17, S11-1, PS-52 Falsaperla, Rosaria: PS-57, FS-11 Fan, Zhu: W3-6 Faraone, Antonio: S03-2 Fiocchi, Serena: PS-7, PS-34, S13-2, PS-2 Flamini, Vittoria: PS-3 Fontana, Sara: PS-84, FS-15 Forman, Henry J.: PS-18 Foroughimehr, Negin: S09-1 Foster, Kenneth: S03-2, W2-4, T3-2 Fouques, Julien: PS-55 Fragoulis, Athanassios: PS-18 Franconi, Rosella: PS-32 Franqueville, Laure: S02-4 Freeman, David: PS-61, PS-70 Freimark, Bruce: PS-79 Frénéa-Robin, Marie: S02-4 Fröhlich, Jürg: PS-39, PS-38, FS-8 Fu, Jing-peng: W3-2 Fuks, Kateryna: PS-12 Furuichi, Ryuusaku: PS-75 Fusco, Roberta: FS-1, PS-4 Fushimi, Motofumi: S10-1 Fussinger, Thomas: PS-89 Gallucci, Silvia: PS-2, PS-7, S13-2, PS-34 Gamboa, Bryan: PS-70, S04-1, PS-61 Gaugain, Gabriel: S03-1, FS-3, PS-9 Geschwentner, Dirk: PS-42, S05-1 Ghasemifard, Fatemeh: PS-45 Ghezzi, Pietro: PS-18 Ghiglieri, Veronica: PS-35 Gianlorenzi, Isabella: S13-6 Giardullo, Paola: S13-6 Gimeno Monge, Leticia: PS-63, PS-51 Gleave, Pippa: S06-2 Goethals. Michel: PS-69 Golzio, Muriel: PS-68 Gomez-Tames, Jose: PS-56, S11-2, S09-5 Gonzalez-Rubio, Jesus: PS-15, PS-16 Gould, Thomas: PS-58, S02-5, S13-4 Greenebaum, Ben: W3-5, DA-1, W3-1, W3-7 Groiss, Silvia: S07-1 Grossman, Nir: S07-2

Gryz, Krzysztof: PS-53 Gugler, Markus: FS-8, PS-38 Gurhan, Hakki: W3-7, W3-4 Gyulai, Balázs: PS-49 Ha, Johyun: PS-59 Ha, Mina: PS-59 Haider, Zain: S03-5 Hartman, Holly: S02-3 Hashemizadeh, Sina: FS-7, PS-33, S09-3 Hattori, Kenji: PS-73, PS-90 Havelka, Daniel: PS-19 Hayashi, Kazuya: S09-5 He, Ronggiao: W3-2, W3-6 Heberling, Dirk: PS-17, S01-1, S05-5 Hein, Matthias: PS-86, FS-16 Henschenmacher, Bernd: PS-18, PS-12, PS-42 Hernandez, Mark: W3-7, W3-5 Higashiyama, Junji: PS-22, S09-8 Hikage, Takashi: PS-22, PS-74, PS-83, PS-64 Hirao, Kouji: PS-5, FS-2 Hirata, Akimasa: S11-2, PS-74, PS-56, S09-8, S10-3, P3-2, PS-83. S09-5 Hirtl, Rene: W1-3, W1-1, PS-41 Hofmann, Peter: S05-1 Hu, Pingdong: W3-6 Hurtier, Annabelle: S04-2 Hussain, Niamat: PS-37 Höytö, Anne: PS-8 lakovidis, Serafeim: PS-28, S05-2 Ibey, Bennett: PS-61, PS-72, S13-1, PS-77, S04-1, PS-70, S13-3 ljima, Etsuko: PS-74, PS-83 Ikehara, Toshitaka: FS-2, PS-14, PS-5 Ikehata, Masateru: PS-73, PS-80 Ikuyo, Miwa: S01-2 Inoue, Miyako: PS-74 Ishitake, Tatsuya: PS-83, PS-64, PS-74 Ismailova, Esma: PS-46, FS-9 Ivanova, Elena P.: FS-12, PS-62 Iyama, Takahiro: PS-22 Jagielski, Kai: PS-20, S05-3 Jakovcevic, Antonia: PS-82 Jalilian, Hamed: S12-3 Jeon, Sangbong: PS-85 Jeong, Ye Ji: PS-50 Jeschke, Peter: W1-4, W1-1 Jiang, Haoyu: PS-27 Jiang, Peidu: S02-1 Jimenez, Hugo: S04-6, PS-11 Jin, Yumin: PS-67 Johnson, Leland: PS-61, PS-70, S04-1 Joo, Hyunjoo: PS-59 Joseph, Wout: S09-6, S09-3, PS-69, FS-6, S09-2, S01-5, S01-6, PS-78, S01-3, FS-13, PS-26, S05-2, S09-7

Joshi, Paramananda: PS-45 Josipovic, Iván: S09-3 Joushomme, Alexandre: S04-2 Julien, Thomas: PS-55 Jung, Kyu-Won: PS-59 Kadoya, Toshihisa: PS-75 Kamijyo, Toshio: PS-80 Kanagawa, Munetaka: PS-90 Kandala, Sahithi: W3-7, W3-5 Kangasmaa, Otto: S05-4 Karimi, Fariba: FS-17, PS-52 Karina, Cindy: FS-7, PS-33 Karipidis, Ken: S12-5 Karpowicz, Jolanta: PS-53, PS-54 Kashiwa, Tatsuya: PS-74 Kellner, Rupert: PS-18 Kennedy, Gordon: S06-5 Khan, Muhammad Waseem: PS-8 Kiester, Allen: PS-72, PS-77, S13-3, S13-1 Kim, Hye Sun: PS-71 Kim, Nam: PS-37, S01-4, PS-50, PS-71 Kinouchi, Yohsuke: PS-5, PS-14, FS-2 Kinsey, Luke: W3-3 Klussmann, Jonas: S05-3 Knape, William: S02-3 Koch, Wolfgang: PS-18 Kochali, Beyhan: PS-60 Kodera, Sachiko: PS-74, PS-83, S09-8 Koistinaho, Jari: PS-8 Kojima, Masami: PS-80 Kopacz, Thomas: PS-17, S01-1, S05-5 Kordic, Anton: PS-82 Kos, Bor: S02-6 Kosyer, Erim: PS-62, FS-12 Kourtiche, Djilali: PS-47, FS-10 Kowalczewski, Andrew: S06-5 Kowalczewski, Christine: S06-5 Kraus, Thomas: PS-20, S05-3 Krausz, József: PS-49 Kubinyi, Györgyi: PS-48, PS-30 Kubocz, Michael: PS-20, S05-3 Kuehn, Sven: PS-60, S09-3 Kuhne, Jens: S05-1, PS-18, PS-13, PS-12, PS-42 Kumari, Kajal: PS-8 Kurtcuoglu, Vartan: PS-52, FS-17 Kuster, Niels: S04-7, S07-2, PS-52, S11-1, S10-2, S10-5, PS-33, S09-3, FS-17, PS-89, FS-7, PS-60 Kuwahata, Akihiro: S10-1 Kwon, Ho-Jang: PS-59 Laakso, Ilkka: S03-3, S10-3, S05-4 Lagorio, Susanna: S04-5 Lagroye, Isabelle: S04-2 Lajevardipour, Alireza: S12-5, S10-4, S09-1 Lakshmi Narasimhan, Prashanth: PS-21, FS-4

Lameth, Julie: S04-3 Lammegger, Roland: S07-1 Lan, Junging: PS-56 Laporte, Maorie: S12-4 Lauciello, Nicolò: PS-29 Le Dréan, Yves: PS-48 Leblanc, Normand: S02-5, S13-5, PS-58, S13-4 Ledent, Maryse: PS-31 Lee, Ae-kyoung: PS-59 Lee, Hae-June: PS-50 Lee, Jaemin: S01-4 Lee, Young Seung: PS-85 Legros, Alexandre: S08-3, S12-4 Lehtonen, Sarka: PS-8 Lelli, Daniele: PS-35 Leszczynski, Dariusz: W4-1, W4-4 Leveque, Philippe: S04-2, S04-3, PS-68 Levin, Michael: T1-1 Li, Congsheng: PS-27 Liberti, Micaela: FS-15, S03-5, S07-3, PS-4, FS-1, PS-35, PS-29, FS-11, PS-57, S03-7, PS-84 Liimatainen, Anu J.: PS-8 Linklater, Denver: FS-12, PS-62 Litt, Jeffrey: PS-79 Liu, Bing-jun: W3-2 Liu, Jun: S02-1 Liu, Sen: S01-2 Liu, Ying: W3-6, W3-2 Loizeau, Nicolas: FS-8, PS-38 Lu, Mai: S10-7 Lu, Tao: W3-6 Luis, Pablo: PS-15 Maessen, Ralph: FS-4, PS-21 Magne, Isabelle: FS-10, S12-4, S08-1, S08-3, PS-47 Mai, Thi-Cuc: S06-3 Mai, Thi-Cuc: S06-4 Mallat, Michel: S04-3 Manassas, Athanasios: PS-28, S05-2 Mancuso, Mariateresa: S13-6 Mansurov, Vasilii: S13-5, S13-4 Marchalot, Julien: S02-4 Mariappan, Panchatcharam: S02-6 Marino, Carmela: PS-32, S13-6, PS-40 Martens, Luc: FS-6, S01-6, PS-69, PS-78, S01-5, S09-6, S01-3, PS-26, FS-13 Martens, Stacey: PS-72 Martin-Castillo, Sergio: PS-15 Martini, Giorgio: PS-10 Martins, Jean: PS-51, PS-63 Masini, Barbara: S09-7, PS-7 Maslanyj, Myron: S11-4, PS-44 Masuda, Hiroshi: PS-64, PS-83, PS-74 Matkovic, Andela: PS-82 Matsubara, Kasuki: PS-90

Matsumoto, Akiko: PS-83 Mazzarda, Flavia: S02-2 McConway, Kevin: PS-88 McDaniel, Amanda: PS-79 Mcgrath, Callum: S04-6, PS-11 Mercadal, Borja: S03-6 Merla, Caterina: PS-32, S13-6, PS-3, PS-40 Miklavčič, Damijan: S02-6 Mir, Lluis M.: S13-7, S03-5, S07-3 Miura, Norika: S09-8 MO, Mireku: S11-4 Mo, Wei-chuan: W3-2 Moche, Michael: S02-6 Modolo, Julien: FS-3, S03-6, S03-1, PS-9 Monleon-Pradas, Manuel: PS-40 Moreno-Manzano, Victoria: PS-40 Mortaud, Stéphane: PS-43 Mougin, Camille: PS-43 Mousavi, Seyedeh-Hajar: PS-46, FS-9 Mueller, Meike: S06-1 Muratori, Claudia: S02-2 Mylacraine, Kevin: S04-1 Müller, Pie: S09-3 Naarala, Jonne: PS-8 Nagaoka, Tomoaki: PS-22 Nakano, Yuki: S10-3 Nakasono, Satoshi: PS-90 Natale, Giuseppina: PS-35 Necz, Peter: PS-49 Nehme, Hassan: PS-51 Neufeld, Esra: S10-2, S07-2, S10-5, PS-52, FS-17 Nikolayev, Denys: S03-4, S03-6, PS-9, FS-3, S03-1 Nissi, Janita: S03-3 Novikov, Vadim V.: W3-8 Nuccitelli, Richard: S02-3, PS-79 Nájera, Alberto: PS-15, PS-16 Oesterreich, Pascal: PS-20 Oftedal, Gunnhild: S08-2, W2-5 Ohkubo, Chiyoji: PS-75 Ohtani, Shin: PS-90 Okido, Futa: PS-5, FS-2 Omote, Tomomichi: PS-75 Onishi, Teruo: S01-2 Orlacchio, Rosa: PS-68 Ostiguy, Genevieve: S12-4, S08-3 Ozaki, Ryunosuke: PS-74, PS-64 Pack, Jeong-Ki: PS-71 Paffi, Alessandra: PS-4, FS-1, S03-7, PS-35 Palumbo, Rosanna: S04-4 Pannetrat, Stephane: PS-55 Pannicelli, Alessandro: S13-6 Parazzini, Marta: PS-7, PS-34, S13-2, PS-2 Pardo, Manuel Geronimo: PS-16 Park, Hyejin: PS-50

Park, Seong Gyoon: S01-4 Parker, James E: S06-5 Pasche, Boris: PS-11, S04-6 Pasquali, Emanuela: PS-32 Payne, Jason: S04-1, PS-61, PS-70, S06-5 Pelletier, Amandine: S06-3, W2-2, S06-4 Peng, Jessica: S08-3 Percherancier, Yann: S04-2 Perera, Palalle G. Tharushi: PS-62, FS-12 Peric, Marin: S09-4 Peyman, Azadeh: PS-33, FS-5, PS-23, FS-7 Peyro, Ramon: PS-16 Pierce, Sophia: PS-58 Pinto, Rosanna: S13-6, PS-10 Pintér, Bertalan: PS-48, PS-30 Pittaluga, Julia L.: S02-2 Plante, Michel: S08-3, S12-4 Poeta, Loredana: S04-5 Poni, Redi: S10-2, S10-5 Pophof, Blanka: PS-12, PS-42 Poulletier De Gannes, Florence: S04-2 Priault. Muriel: S04-2 Procacci, Nicole: S02-5, S13-4 Průša, Jiří: PS-19 Quéguiner, Lorette: FS-3, PS-9, S03-1 RACHEDI, Kammel: PS-55 Rao, Xin: S02-1, PS-81, FS-14 Raphela, France: PS-1 Rashed, Essam: S10-3 Rauly, Dominique: PS-51, PS-63 Ravazzani, Paolo: S13-2, S09-7, PS-7, PS-34 Reboux, Sylvain: PS-60 Regel, Sabine: S07-2 Reichenbach, Alexander: FS-8, PS-38 Remondini, Daniel: PS-29 Rems, Lea: CA-1 Ren, Jie: W3-2 Repac, Filip: S11-6 Ribon, Matthieu: S04-3 Rittinghausen, Susanne: S06-1 Rivière, Charlotte: S02-4 Roach, William: S04-1, PS-70, PS-61 Rodriguez Doblado, Laura: PS-40 Roivainen, Päivi: PS-8 Rols, Marie-Pierre: PS-68 Romeo, Stefania: S04-4, S04-5 Rossano, Federico: FS-1, PS-4 Ruffini, Giulio: S03-6 Ruhr, Francis: PS-61, PS-70 Röösli, Martin: S12-3, PS-38, W4-2, FS-8, S11-4 Sachno, Dmitrij: PS-18, S06-1 Saito, Kazuyuki: PS-87 Salati, Simona: P4-1, FS-15, PS-84, PS-32 Salvador, Ricardo: S03-6

Samaras, Theodoros: S10-2, S05-2, PS-66, PS-28 Sannino, Anna: S04-4, S04-5 Sapunar, Damir: S11-6, S09-4 Sarja, Henna: PS-8 Sarolic, Antonio: S09-4, PS-82, S11-6 Sasaki, Hiroshi: PS-80 Sato, Kazuki: PS-87 Sauleau, Ronan: S03-4, S03-1 Sauter, Cornelia: PS-12 Scapaticci, Rosa: S10-8 Scarfi, Maria Rosaria: S04-4, S04-5 Schaudien, Dirk: S06-1 Schiebahn, Alexander: S05-3 Schiessl, Klaus: W1-1, W1-3 Schiessl, Sascha: PS-17, S05-5, S01-1 Schiffarth, Anna-Malin: PS-17, S05-5, S01-1 Schilling, Lisa-Marie: FS-16, PS-86 Schmid, Gernot: W1-3, W1-1, PS-41, PS-12, PS-18 Schmid, Martin: PS-39 Schmid, Timon: PS-39 Schmidt, Janine-Alison: PS-42 Schmiedchen, Kristina: S08-2, PS-65 Schmutz, Claudia: S11-4 Schneeweiss, Pia: S05-3, PS-20 Schneider, Fabian: PS-39 Schuermann, David: S12-3 Schwarz, Holger: PS-36 Schüz, Joachim: PS-66 Sekino, Masaki: PS-6, S10-1 Selmaoui, Brahim: PS-30 Setti, Stefania: FS-15, PS-84 Sewald, Katherina: S06-1 Shaev, Igor A.: W3-8 Sharma, Rahul: PS-20 Sheffield, Kimberly: S04-6 Shen, Steven C.: S11-4 Shiina, Takeo: S11-3 Shikhantsov, Sergei: S01-5, PS-78, FS-13 Shuang, Liu: S10-1 Signori, Emanuela: PS-32 Silva, Michael: PS-44 Simko, Myrtill: T3-1 Soares, Icaro: S03-4 Sommersdorf, Stephan: PS-36 Souques, Martine: PS-47, FS-10, S08-3, S12-4, S08-1 Soyka, Florian: S12-1 Spiegelberg, Andreas: FS-17, PS-52 Steelman, Zachary: S13-1 Stephan, Christa: PS-38, FS-8 Stoffregen, Bill: S02-3 Studerus, Jürg: PS-39 Su, Guodong: S02-1 Sufian, Md. Abu: S01-4 Sun, Chuan: PS-67

Sun, Lingling: S02-1 Suzuki, Yasunori: S09-8 Suzuki, Yosuke: S11-2 Suzuki, Yukihisa: PS-80, PS-73, PS-90 Sylla, Mansour: PS-55 Szabó, Erika: PS-48, PS-30 Szilágyi, Zsófia: PS-48, PS-30 Sönksen, Jana: S11-4 Sözer, Esin B.: PS-72, S02-2 Tafazolli, Rahim: P1-1 Taguchi, Kenji: PS-74 Takahashi, Akira: PS-14 Taki, Masao: S01-2 Tanghe, Emmeric: FS-13, S01-5, PS-78 Tanori, Mirella: S13-6 Tarao, Hiroo: FS-2, PS-5 Tasaki, Takafumi: PS-80 TENIOU, Mounir: PS-55 Thielens, Arno: FS-6, S09-2, FS-13, PS-26, S01-6, S09-3, PS-78, S01-5 Thomas, Robert: S04-1, PS-61, PS-70 Thuroczy, György: PS-30, PS-49, PS-48 Tillmann, Thomas: S06-1 Tobita, Kazuhiro: S01-2 Tognola, Gabriella: PS-7, S09-7, S13-2, PS-2, PS-34 Tokoutsi, Zoi: FS-4, PS-21 Toledano, Mireille: S11-4 Tominaga, Toshihiko: PS-5, FS-2 Torfs, Guy: S01-5 Toribio, David: S09-2 Tornevik, Christer: S01-3, PS-45 Tran, Phung: PS-44 Trentadue, Germana: PS-10 Triggiani, Doriana: PS-32 Tsaioun, Katya: PS-18 Tsuchiya, Koichiro: PS-14 Tsutsumi, Tetsuya: PS-75 Ueno, Shoogo: S10-7 Ushiyama, Akira: PS-73, PS-90 Vafeiadis-Sinoglou, Alexandros: PS-28 Vallet, Leslie: S13-7 Van Den Bossche, Matthias: S01-3 van Deventer, Emilie: T2-1 Van Huizen, Alanna: W3-3 Vatovez, Benjamin: W1-1, W1-5 Velghe, Maarten: S01-6 Verbeek, Jos: PS-18 Verlaek, Mart: PS-69 Verloock, Leen: PS-69, S01-3 Vermeeren, Gunter: PS-78, S09-6, PS-26, PS-69, FS-13, FS-6, S01-5 Vernier, P. Thomas: S02-2 Veroy, Karen: PS-21, FS-4

Vijayalaxmi, : T3-2 Vilagosh, Zoltan: S10-4, S12-5, S09-1 Villegier, Anne-Sophie: PS-43 Viola, Ciara: S02-5 Vollaire, Christian: S02-4 Voorhees, William: S06-5 Wada, Keiji: PS-90, PS-73 Wang, Guomi: W3-6 Wang, Mengchu: S10-8 Wang, Shanshan: S05-2 Wasaka, Toshiaki: S09-5 Wasoontarajaroen, Siriwat: PS-90 Watanabe, Soichi: S01-2 Wendling, Fabrice: FS-9, PS-46, S03-6 Whaley, Paul: T2-2 Whitmore, Jeffrey: S06-5 Wiart, Joe: S05-2, S11-5, S09-7 Wiggermann, Philipp: S02-6 Williams, Weston: PS-61, PS-70 Wleklinski, Michael: S06-1 Wollschläger, Daniel: PS-66 Wood, Andrew: S12-5, S10-4, S09-1 Wright, Rob: PS-18 Wu, Tongning: PS-27 Wuschek, Matthias: S01-1 Xavier, Pascal: PS-63, PS-51 Xi, Jingtian: PS-60 Yablokova, Elena V.: W3-8 Yamaguchi-Sekino, Sachiko: PS-6 Yamato, Yuuki: PS-75 Yamazaki, Kenichi: S11-3 Yang, Lisha: PS-58 Yasuno, Emiko: FS-2, PS-5 Yoshie, Sachiko: PS-80 Yoshioka, Hikaru: S10-1 Yu, Liyang: S02-1 Yue, Keqiang: S02-1 Yumoto, Hiromichi: PS-5, FS-2 Zahner, Marco: PS-39, FS-8, PS-38 Zaklit, Josette: S13-4, S13-5 Zambotti, Alessandro: S13-6 Zanni, Marco: PS-10 Zeni, Olga: S04-5, S04-4 Zhadobov, Maxim: S03-1, S03-5 Zhang, Hai-tao: W3-2 Zhang, Zi-jian: W3-2 Zhou, Jun: S02-1 Zhou, Mengxi: PS-47, FS-10 Zhu, Longtao: PS-67 Ziegelberger, Gunde: PS-42 Ziegler, Toni: PS-38, FS-8 Zironi, Isabella: PS-29 Zradziński, Patryk: PS-53